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Chapter 1

Introduction

Can, you invent an algorithm for the function defined in Table 1.1? That, is, can you
write a computer program that generates f(x) when given x and not use a brute
force table look-up?, What about the function in Table 1.2?1 Think about how, you
invented these algorithms, Were your algorithms based on a pattern in the function?
For example, did you notice that for the first example the output is 1 if and only if
the input, taken as a string, is symmetric about its center? What do you think about
computers finding patterns like these? It seems that some people are surprised that
computers cannot already do this. If we know ahead of time that the function h~s
some specific structure then we can write a program to fine tune that structure; butt
we do not have computers that can find basic structures in a very general setting.
Others are surprised that someone would even suggest that computers might be able
to do this. The invention of algorithms has been equated with scientific discovery (e.g.
[32] which makes one balk at the idea of automating algorithm design. We believe
that algorithm design is at most a subset of scientific discovery and that it is a subset
that can be automated. Further, we believe that the first step towards automation
is to develop a solid theoretical understanding of this pattern finding ability that
characterizes algorithm design. This theoretical understanding must in turn be built
on a solid understanding of "pattern.,

The algorithms in use today were invented by people. There are other similar
engineering products, such as estimation systems, control systems, communication
systems, that were designed by people, but with a fundamentally different dependence
upon the cleverness of the designers. That is, in the traditional engineering problems,
there is an engineering theory that guides the designer. People must invent new
algorithms without the aid of an engineering theory. The difference between the
algorithm engineering problem and many other engineering problems is reflected in
the difference between "invent" and "design." Webster [66] defines "invent:"

"... to produce ... through the use of the imagination or of ingenious
thinking ... "

'One algorithm is to treat the first 2 bits as one number and the second 2 bits as a second number
and then f(z) is the arithmetic sum of these two numbers.



XI X2 X3 X4, f(XX2,X3,z4

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0

1110 0
1 11 1I

Table 1.1: Find an Algorithm for This Function

XI X2 X3  X f(XI,2,XX)

0 0 0 0 000
0 0 0 1 001
0 0 1 0 010
0 0 1 1 011
0 1 0 0 001
0 1 0 1 010
0 1 1 0 011
0 1 1 1 100
1 0 0 0 010
1 0 0 1 Ol
1 0 1 0 100
1 0 1 1 101
1 1 0 0 011
1 1 0 1 100
1 1 1 0 101
1 1 1 1 110

Table 1.2: Find an Algorithm for This Function

2



and "design:"

"... to create, fashion, execute, or construct according to plan ... "

It seems that algorithms are invented while estimation systems, control systems,
etc. are designed. We believe that the difference between invention and design is
simply the existence of an engineering theory. We need an engineering theory to
allow algorithm design.

This report introduces "Pattern Theory." Pattern Theory consists of a formal
definition of pattern (or structure), an approach to finding the pattern when it exists,
and a characterization of various phenomena with respect to this structure. The
principal objective of this report is to demonstrate that many kinds of practically
important patterns are well reflected in this formal definition.

Chapter 2 describes the need for an engineering theory of algorithm design. Chap.
ter 3 describes Pattern Theory which is our approach to a design theory for algorithms.
The key to our approach is a measure of algorithm good-ness that we call Decomposed
Function Cardinality (DFC). Chapter 4 defines this measure and relates it to the more
conventional measures. Function Decomposition is the method for optimizing with
respect to DFC. Chapter 5 develops the theory behind function decomposition and
describes computer programs for accomplishing decompositions. We equate the ex-
istence of a good algorithm for a given function and the existence of a "pattern" in
that function. So the design of a good algorithm is the same as finding the pattern
in a function and we think of DFC as a measure of the pattern-ness of a function.
Chapter 6 reports on the results of applying this measure to a variety of fihnctions;
we call this class of results "Pattern Phenomenology."
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Chapter 2

Background

2.1 Pattern Theory

2.1.1 Introduction to Pattern Theory

The development of Pattern Theory began around 1986 at the Air Force Institute
of Technology (AFIT), Wright Patterson Air Force Base, Ohio. One of this report's
authors, then on Long-Term Full-Time training, Prof Alan V. Lair, of AFIT's Math-
ematics Department and Prof Matthew Kabrisky, of AFIT's Electrical Engineering
Department, all played major roles in this early work. A discussion of many of the
ideas that went into Pattern Theory was published in [48, 50, 511. The name "Pattern
Theory" was adopted after the International Conference on Pattern Recognition in
1988. Our paper at that conference was in a session entitled "Fuzzy Sets and Pattern
Theory," All the other papers were clearly about Fuzzy Sets, so we must have been
the Pattern Theory. A team of AART and visiting engineers continued the Pattern
Theory work in the in-house Pattern Based Machine Learning (PBML) project whose
results are the subject of this report. The PBML Project is generally referred to as
Pattern, Theory 1 (PT 1) in this report.

2.1.2 What is a Pattern?

An Introduction to the Pattern Theory Paradigm

It will be useful to briefly introduce the Pattern Theory (PC) paradigm to motivate
the background. Chapter 3 is a detailed introduction to the PT paradigm. The basic
problem is how do you go from a definition of a function to a computer realization
of that function. The problem has some definition of a function as its starting point
and a computer algorithm as its solution.

We divide the kinds of information that might constitute the definition into two
classes: samples of the function and "other" information about the function. Fig-
ure 2.1 represents the algorithm design problem. The grand scheme of Pattern Theory
is to eventually complicate this flow chart slightly by allowing "learned" algorithms
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Figure 2.1: The Algorithm Design Process

to be added to the "other" information. By closing the loop we create an iterative
approach to realizing more and more complicated functions. Figure 2.2 represents the
iterative approach to algorithm design. This representation will be useful in explain-
ing the phases of Pattern Theory and its relationship to other paradigms. Figures 2.3
through 2.6 represent the four planned phases of Pattern Theory. Pattern Theory
Phase I concerns algorithm design by function decomposition when the function is
defined by an exhaustive table. Pattern Theory Phase 2 concerns algorithm design
by function decomposition when the function is defined by a combination of samples
and limited other information. Initially the other information will simply be that
the function has limited computational complexity. Pattern Theory Phase 3 concerns
algorithm design by function decomposition when the function is defined by a com-
bination of limited samples and robust other information. Pattern Theory Phase 4
concerns iteratively designing increasingly complex algorithms by function decompo-
sition. This report is concerned with the results of the first phase. The second phase
(PT 2) began as this report was being finished.

While there is no general theory for working the problem of algorithm design it
has been recognized that finding some pattern in the function could be important
(e.g. "Perhaps the most valuable concept of all in the invention of algorithms is that
of recognizing patterns ..." [38] or ".... many of the central problems of behavior,
intelligence, and information processing are problems that involve patterns." [62]).
Pattern Theory is an attempt to formalize this pattern finding problem within the
context of algorithm design. By a "pattern" we mean the structure, order or regularity
in a function. Most people would have no trouble recognizing the patterns in the
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X, f Wx1
1 1
2 4
3 9
4 16
5 25
6 36

Table 2.1: Recognizing a Pattern in a Function

functions defined by Table 2.11 and Table 2.22. Pattern Theory ccncerns the problem

of recognizing the patterns in functions that will allow their economical computation.
But, what is a pattern?

Intuitive Ideas about Patterns

We are concerned with patterns in the sense of regularity, order, structure or the
opposite of chaos. People seem to have a common sense notion of pattern-ness.
This common sense notion of a pattern is supported by people's willingness to assign
a pattern-ness ranking in experiments like Garner's [24] and those of Section 6.4.

Patterns can occur in many different forms. Figure 2.7 has examples of patterned

I f(X) =-22Primality test.
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X f(x)
1 1

2 1
3 1
4 0
5 1
6 0
7 1
8 0
9 0

10 0
11 1
12 0

Table 2.2: Recognizing a Pattern in a Function

and unpatterned images, strings of letters, and sequences of numbers. Again on an
intuitive level, patterns are easier to remember; for example, the sequence

17761812186519151941

is easier to remember (if you recognize the pattern) than a sequence like

73217519816234218192.

Patterns also seem to be easier to extrapolate; for example, we would have more
confidence in guessing the next number in the sequence 2,4,6,8,10,12,... than in
the sequence 5,2, 7,3,5,12,...

Traditional Ideas about Patterns

Although there seems to be this common sense notion of pattern-ness, there has been
little success in capturing this notion as a formal mathematical concept. References
[48, 51] describe our assessment of the traditional formulations of pattern-ness.

Patterns and Simplicity

We feel that the most useful direction for exploring pattern-ness is the one which re-
lates pattern-ness and simplicity of description. Simplicity is the opposite of complex-
ity and computational complexity has a well developed theory. Therefore, through
this connection to complexity, pattern-ness immediately has a rich theory.
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Figure 2.7: Patterned and Un-Patterned Objects

The Relativity Problem

A problem arises though because the theory is almost too "rich." That is, there are
many measures of complexity and pattern-ness is then relative to the measure used.
Pattern Theory addresses this relativity problem by proposing that there is a special
model of a computer and a measure that reflects the essence of complexity in the
sense of patterns.

In a sense we have gone full circle. We started with the problem of finding eco-
nomical representations of a function (i.e. an algorithm). We decided that recognizing
patterns is important in this endeavor. Now we are saying that recognizing patterns
is essentially the same as finding economical representations. Why even bring up the
concept of patterns? The answer lies in the need for a concept of general computa-
tional complexity that does not currently have a name. This needed concept closely
reflects the intuitive notion of a pattern so that is what we call it. We also like the
connection this gives the problem to the early pattern recognition work. This early
work in pattern recognition formed the basis for many current artificial intelligence
problems. When you consider the problem of algorithm design as simply one of min-
imizing computational complexity, the temptation to choose a specific non-general
measure of complexity is too strong. We lose sight of the idea of finding the ba-
sic structure (i.e. pattern) in the function. As a practical matter, we could develop
all the "Pattern Theory" concepts in terms of traditional computational complexity.
However, by talking about patterns we feel we more easily focus on the general or
abstract complexity which is so important and it ties us into disciplines which we
think are quite relevant.
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2.2 Background of Related Disciplines

2.2.1 Recognizing Patterns - the Many Disciplines

In the following we will survey the disciplines relevant to Pattern Theory. Perhaps the
most obvious discipline is pattern recognition (e.g. [16, 22, 29]). However, the modern
appc,)aches to pattern recognition do not treat patterns in our special sense. This
position is developed in [48, 51]. Early pattern recognition research was concerned
with special patterns, as are elements of modern research (e.g. [58, 63]). At one
time, Pattern Recognition (PR) and Artificial Intelligence (AI) research had a great
deal in common. This common philosophical base is quite relevant to Pattern Theory.
However, the specific disciplines within PR and AI (e.g. statistical pattern recognition,
syntactic pattern recognition, expert systems, neural nets) seem to have all diverged
from the core problem. In all these disciplines, the basic structure of the problem must
be recognized by the designer without theoretical tools or automation. Only after this
basic structure is defined can theoretical tools or anything approaching automation
be applied. Data Compression (e.g. [27]) can be considered as a problem of finding
and exploiting patterns in data. This has an obvious connection with our problem.
Within the data compression discipline the patterns are recognized by the designer of
the data compression routine, again without theoretical tools or automation. As we
have already mentioned, the complexity and computability disciplines of theoretical
computer science are most related to Pattern Theory. We will make extensive use
of computational complexity results. We will also show that computability is a sub-
problem of complexity and of no special interest within our context (see Appendix A).
Finally, the problem of designing electronic circuits (switching theory) is connected
to Pattern Theory. We will see that with respect to our generalized measure of
complexity, designing efficient circuits and designing efficient algorithms are the same
problem. As you would expect, both problems depend on finding some pattern in
the function to be realized. We make extensive use of function decomposition theory
with was originally developed within the switching theory context.

2.2.2 Pattern Recognition

The relationship between the traditional field of pattern recognition and Pattern
Theory is discussed in depth in [48, 49]. The following is a brief summary of that
discussion.

The subject of pattern recognition can be divided up many ways. The most
common is to consider the fields of statistical (also decision-theoretic, geometric or
vector space) pattern recognition, syntactic (also structural or linguistic) pattern
recognition and fuzzy methods of pattern recognition. The references [48, 49] use
a slightly different division, emphasizing the role of apriori structure in designing
recognizers. The a priori structure is the representation system or language used to
express the recognition algorithm. Pattern Theory is an attempt to generalize this
idea of a priori structure. Therefore, the role of a priori structure within traditional
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pattern recognition is especially relevant. Most traditional pattern recognition is
based on either a geometric or a syntactic structure. Reference [48] discusses the
background of traditional pattern recognition in terms of these two structures.

The basic disconnect between Pattern Recognition and Pattern Theory lies in our
belief that the interesting pattern finding phenomenon occurs in the design of recog-
nition systems rather than in their operation. Reference [51] explains this position.
This difference in perspective is reflected in the different approaches to research. In
Pattern Recognition it is generally believed that a researcher should choose a single
realistic problem (typically speech or character recognition). The PT approach is to
study many simple problems (e.g. Chapter 6 reports on over 1000 different functions).
The concern is that when we study only a single function, the researcher ends up do-
ing the pattern finding and the so-called "pattern recognition" algorithm is simply
a realization of the patterns recognized by the researcher. Studying many different
kinds of functions makes it more difficult for the researcher to insert (deliberately or
unconsciously) any humanly recognized patterns. This forces the machine to do some
true pattern finding.

2.2.3 Artificial Intelligence

Machine learning, a problem of artificial intelligence (AI), might be thought of as
an attempt to automate the process that we seek to understand. That is, we want
to understand the process of defining an algorithm while machine learning seeks
to automatically generate an algorithm. Therefore, Pattern Theory has a strong
connection to machine learning.

We think of the artificial intelligence approach to this problem as one of figuring
out how people do it and then attempting to model that process on a computer. For
example, expert systems derive from the cognitive psychology model of thought and
neural nets derive from the physiological model of the hardware involved in thought.
It is possible that Al will come up with useful systems based on this approach without
any understanding of the process at an abstract level. An often used e'nalogy for AI
is the problem of manned flight. In this analogy the AI approach would be analogous
to the artificial bird approach. That is, we could design machines with bird-like
properties since a bird is an existing system which performs the desired function. We
are trying to take what might be called the "Wright" approach. That is we seek to
understand the basic phenomenon that will allow us to design from first principles.
This approach will not immediately lead to systems with practical value; however, we
believe it is the only approach to continuing long term improvements.

In AI based machine learning,

"The human engineer specifies a weak method for a problem's solution
that is (semi) automatically (...) streamlined by the system with experi-
ence." 13

"From Doug Fisher's Tutorial: Machine Learning and its Applications, July 1990.
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Figure 2.8: Neural Net Paradigm

We feel that the so called "weak method" constitutes a large fraction of the overall
solution. The problem addressed in Pattern Theory includes the development of a
weak method as well as the "automatic streamlining."

There are many approaches to machine learning. Learning within the context of
expert systems include rule learning (e.g. [13]), adaptive figure-of-merits to improve
non-exhaustive searches (e.g. [13]), and genetic algorithms (e.g. [15]). Some neural
nets learn [53]. Within the discipline of pattern recognition there are learning methods
for both geometric (e.g. [16]) and syntactic (e.g. [22]) systems. Adaptive systems (e.g.
[37]) as used in estimation and control theory for non-linear systems have as many
learning characteristics as Al systems.

We can characterize machine learning systems using the diagram in Figure 2.1.
The "other" information includes an assumption that the desired function has a
realization of the form used by the learning system. Take Neural Nets for example
(Figure 2.8), the "other information" is an assumption that the desired function
may be represented by the chosen architecture of thresholded linear combinations.
Appendix A demonstrates that this assumption is surprisingly restrictive. The design
approach then is back-propagation or some other method of assigning weights. The
traditional machine learning paradigms are built around a specific structure. The key
idea of Pattern Theory is that we want to find the structure that already exists in
the function. We do not want to try to force fit a function to some structure that we
chose ahead of time.

One Al approach, known as Abduction [44], uses the "chunking" idea of Miller [43].
The function decomposition approach of Pattern Theory also exhibits this chunking
idea.
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2.2.4 Algorithm Design

The texts on algorithm design (e.g. [3]) are quite different from the texts on most
other electrical engineering design problems (e.g. circuit design, control system de-
sign, communications system design). Most electrical engineering design texts tell, in
an almost cookbook fashion, how to solve problems of a given type. Typically you
begin by developing a dynamic model of the system involved. Next, you apply some
very general principles, such as modulation in communications or feedback in con-
trols. Then there are some mathematically rigorous tools for optimizing the design.
Finally there are methods for predicting performance and evaluating the design. By
contrast, texts on algorithm design give a list of specific algorithms that you are to
mix and match to your problem. They do not tell you how to come up with a new
algorithm. If controls texts were like algorithm design texts they might give a table of
feedback gains for specific plants and specific desired step responses, but they would
not give the general relationship between feedback gain and system performance that
control theory actually provides. It seems that if an engineer with a good under-
standing of control theory were to compete in solving a new controls problem with an
engineer with no controls background, the engineer with knowledge of control theory
would arrive at a much better design. However, if two engineers were to compete
at discovering a new algorithm, the engineer with a background in algorithm design
would seem to have little advantage (unless, of course, some previously discovered al-
gorithm happened to fit the new problem). In summary, although you can find texts
on algorithm design, they do not address design of fundamentally new algorithms.

In the introduction of an algorithm design text they may mention a general prin-
ciple of algorithm design know as "divide and conquer," e.g. [7, p.3]. The function
decomposition approach of Pattern Theory can be thought of as a formalization of
the divide and conquer principle.

An important technology that is being developed and used in the Avionics Di-
rectorate is Model-Based Reasoning, especially its application to target recognition.
From a Pattern Theory perspective, Model-Based Reasoning is not too different from
traditional algorithm design. Referring again to Figure 2.1, model-based simply
means that the "other" information is a collection of models. The algorithm de-
sign problem is classical; that is, we are left to our own inventiveness to turn the
models into an algorithm (Figure 2.9).

2.2.5 Computability

The problem of computability would seem to be quite relevant to Pattern Theory.
But it is not. Computability, in its formal sense, is tied to recursion.

"... because all evidence indicates that the class of partial recursive func-
tions is exactly the class of effectively computable functions; ... " 1351

It seems clear that recursion is a desirable property in a function, but it is neither nec-
essary nor sufficient for a function to be patterned. We say this because all functions
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Figure 2.9: Model-Based Reasoning Paradigm

of interest in practical computing are finite; all finite functions are partial recursive;
yet finite functions are not practically computable with high probability. There are of
course many infinite functions (especially those on the real or natural numbers) that
are of interest, but we never really try to compute them. We would always be satis-
fied with the ability to compute these function on some finite sub-domain. Therefore,
the use of (and complete dependence on) infinite functions for interesting results in
computability makes it of no practical use in Pattern Theory. We will argue later
that recursion is of secondary importance in the general complexity used in Pattern
Theory. Appendix A develops some classical computability results from a Pattern
Theory perspective.

2.2.6 Computational Complexity

As we have mentioned, "Pattern Theory" might more appropriately be an un-named
sub-set of computational complexity theory. The theory of computational complexity
(e.g. [33, 54, 64]) has well developed measures of complexity. The measures used in
Pattern Theory are a special case of these. There are also many computiing theory re-
sults in what we call Pattern Phenomenology. However, complexity theory is oriented
towards analysis rather than the synthesis of computational systems. Sections 4.4 and
4.5 develop the relationship between conventional measures of complexity and Pattern
Theory.

2.2.7 Data Compression

The design of a data compression system depends upon recognizing and exploiting
some pattern in the data. However, like algorithm design texts, data compression
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texts (e.g. [271) give you a list of specific procedures for some common patterns that
were recognized by people. They do not tell you how to find new patterns in data.

2.2.8 Cryptography

Cryptography is concerned with patterns in sequences rather than functions. Al-
though any mathematician will tell you that a sequence is a function, the problem
is somewhat different. Pattern theory has so far been concerned with patterns in
functions. Although the problem of breaking codes must involve pattern finding in
the sense of Pattern Theory, we have not explored how Pattern Theory relates to
cryptography.

2.2,9 Switching Theory

From a Pattern Theory perspective, the design of electronic circuits is essentially the
same as algorithm design. Unlike algorithm design though, there are many theoretical
synthesis tools. There seem to be three approaches to the design of discrete circuits.
One approach (e.g. [21]), using ROM or PLA's, uses an essentially brute force table
look-up. This approach offers no special insight into the pattern finding problem. A
second approach is to design optimal two-level circuits [21]. This approach does not
capture patterns in a sufficiently general sense because some highly patterned func-
tions (e.g. the parity function) do not have efficient two-level realizations. The third
approach is based on function decomposition. The idea of function decomposition
has been around a long time (see [41), but it has had a limited role in circuit design.
Function decomposition is not even mentioned in many standard Switching Theory
texts (e.g. [21, 26, 45]). When function decomposition is discussed (e.g. [60]), there
seems to be general agreement that function decomposition is "prohibitively labo-
rious." We believe that function decomposition gets at the crux of computational
complexity. The practical difficulties of using function decomposition for circuit de-
sign does not detract from its central theoretical role. If nothing else, we hope that
Pattern Theory will contribute to the realization that function decomposition is a (if
not the) fundamental problem in computer science.

2.2.10 Summary

There are many disciplines that are relevant to Pattern Theory. As Pattern Theory
matures there will be many potential areas of application. There are also many results
from these related fields that are useful in Pattern Theory. We especially use some
complexity ideas from computing theory and the function decomposition idea from
switching theory.
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Chapter 3

The Pattern Theory Paradigm

3.1 Why is Pattern Theory Needed?

This section will attempt to motivate the Pattern Theory work. This motivation is
developed by picking a particular problem, discussing the importance of computing
in solving this problem, discussing the role of algorithms in doing computing, and,
finally, discussing the need for a theory to design algorithms.

3.1.1 Offensive Avionics as a Potential Application

The Pattern Theory work was performed in the Mission Avionics Division of the
Avionics Directorate of Wright Laboratory (WL/AART). This organization has of-
fensive avionics algorithms as a principal product. Therefore; we use this potential
application of an algorithm design theory as an example to motivate the need for such
a theory. The arguments used here could have been couched in terms of any one of
the many diverse problems requiring algorithms (see Section 2.2). We chose offensive
avionics algorithms because we are most familiar with this application and it helps
explain why it is appropriate for Pattern Theory work to be done in this organization.

3.1.2 Importance of Computing Power in Offensive Avion-
ics

Offensive avionics (or fire control) is responsible for locating, identifying and selecting
targets, appropriately releasing weapons and doing this in the most survivable manner
possible. In order to better understand what must be done to meet the responsibilities
of fire control, we often think of fire control as a family of functions. These functions
serve one of two purposes. Either they are part of the overall sensor system or they are
part of the control system. The sensor system attempts to determine the "state-of-
the-world," which includes targets, self, threats, cooperating friendlies and anything
else that could be a factor. The control system manages all the resources of the
aircraft. This includes deciding on the specific trajectory for the aircraft, managing
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the sensors, as well as managing the weapons themselves.
All these functions have always been part of the fire control problem. At one

time, the "weapon system" was just a person. This person formed their state-of-the-
world picture from what they could see and hear. They moved into position on foot
and instinctively planned and executed their "weapon delivery" (perhaps a punch or
kick). Over time, people began to use artificial weapons, at first sticks and stones but
eventually guns and bombs. We began to use artificial sensors such as telescopes and
radars. We also developed artificial means of locomotion, beginning with horses and
eventually leading to airplanes. We have added these increasingly sophisticated ma-
chines to a person always trying to improve the overall weapon system performance.
Until recently, the extremely adaptive nature of people has allowed them to do their
state-of-the-world assessment, their planning and control functions and to use these
machines effectively. However, there has been an explosion in the complexity of the
weapon systems. Now we not only have an artificial sensor, we have multiple sensors,
each capable of measuring multiple attributes of many targets. Our artificial weapons
now include many types, some with long range and many degrees of flexibility. Our
means of getting about have become faster and more maneuverable.

At first we tried to deal with the increasing complexity by putting more people
in the system. The crew size for bombers was six when we built the B-52. Then,
as computers and software technology became available we began to deal with the
complexity more and more through aids and automation. The crew of the B-1 was
down to four and the B-2 has only two crew members.

What technology has allowed the crew size to decrease despite an increase in
the complexity of the task? What technology may eventually allow the crew size
to go to zero? The crew provides no useful work in the force times distance sense.
Their sensory capabilities, in terms of being able to resolve and detect light, sound or
acceleration could be easily replaced. People are in modern combat aircraft for one
reason: their computing power. Therefore, it is fair to say that computing power is
an extremely important technology for avionics systems.

3.1.3 Importance of Algorithms in Computing Power

In the preceding section we discussed the importance of computing power. Now we
want to discuss how important algorithms are in overall computing power. We can
think of computing power as being made up of three technologies. One technology
is computing hardware. Fairly good measures of hardware capability exist in terms
of Instructions per Second, Operations per Second, etc. There has been tremendous
growth in computing hardware technology. In addition to hardware, effective compu-
tation requires software. We like to think of this software as being developed in two
stages. First there must be some algorithm that describes the desired computation at
an abstract level. Then this algorithm must be implemented in a specific computer
language. We consider the first problem to be algorithm design and the second prob-
lem to be software engineering. These problems are not entirely separable, just as the
hardware and software problems are not entirely separable; however, it is useful to
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Figure 3.1: Time Complexity of Algorithms

break out algorithm design so we can concentrate on it without having to address spe-
cific implementations. There are some pretty good measures of algorithm goodness,
but not for how well software engineering is doing nor for overall computing power.
Although we cannot do so quantitatively, we still want to point out the special role
of algorithm power.

The expected computational complexity -(time complexity, program length, num-
ber of devices in a circuit, how ever you want to measure it) of an algorithm for an
arbitrary problem goes up exponentially with respect to the size of the input (see
Section A.2.4). Even poor algorithms are low order polynomial complexity. The dif-
ference between having even a poor algorithm and no algorithm becomes tremendous
for problems of even modest size input (see Figure 3.1). Figure 3.2 shows typical
input sizes for some problems of interest. Consider the difference between having
and not having an algorithm and then consider the potential for hardware or software
engineering to make up for this difference. Take an estimator as an example: not hav-
ing an algorithm could only be compensated for by hardware or software engineering
through an increased capability of 2(ls) times. This demonstrates how ridiculous it
is to even think about computing most functions without a good algorithm.

Some specific examples further demonstrate the payoff in having a good algorithm.
As mentioned earlier, estimation theory has an important role in fire control. In
realizing most estimators it is necessary to invert a matrix. One test for whether
or not the inverse of a matrix exists is to compute the matrix's determinant. To
compute the determinant by standard recursion (as in the usual definition of the
determinant) the run-time goes up as the factorial of the matrix size. However, with
the Gauss-Jordan Elimination algorithm it is possible to compute the determinant
with complexity n log n (see [7, 9]). As an example of what this means, if computing
the determinant of a 20 x 20 matrix takes on the order of 50 milliseconds by the Gauss-
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Jordan Elimination method then it would take on the order of 10 million years by the
standard recursion method. Sorting a list with Insertion sort has complexity n2 (570
minutes to sort 100,000 elements) while Quick sort has complexity n log n (30 seconds
to sort 100,000 elements). The relatively recent invention of algorithms like Quick
Sort has brought about many of the word processing features that we use everyday.
Even minor improvements in an algorithm can have dramatic effects. For example, the
invention of the Fast Fourier Transform (FFT) algorithm only reduced the complexity
from n2 to nlog n (see [46]). However, without the FFT algorithm, today's real time
digital Synthetic Aperture Radar (SAR) capability could only be achieved with a
hardware throughput improvement of about five orders of magnitude. Note that the
FFT and Quick Sort algorithms were "invented." Without an engineering theory,
things are invented. With an engineering theory, things are designed.

Therefore, good algorithms are very important in effective computing and in a
real sense more important than hardware or software engineering.

3.1.4 Role of a "Design Theory"

We have gone from recognizing the need for computing power to the need for algo-
rithms; now we want to recognize the need for an engineering theory to help design
algorithms. But before we do that, we review the role of an engineering theory in
design.

Although there are some particular well established engineering design theories
(e.g. Modern Control Theory or Estimation Theory) there does not seem to be much
literature on these kinds of theories in general. There is a body of literature on
methods to improve the creativity of designers (e.g. [6, 17]). There is also some work
on a theory about design (e.g. [28]). However, these do not treat "design theory"
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in the desired sense. The most relevant literature about engineering design concerns
"optimal design" (e.g. [47, 57]). In this literature the design process is one of defining
a model, establishing the criteria for a good design and then optimizing the design
with respect to that criteria. While most of the traditional optimal design theories
have quantitative criteria and specific methods for optimization, they would be of
value even without that. A good design theory tells you what is important about a
class of problems, tells you about some absolute limits on performance, allows you
to predict performance, and gives you some specific steps towards solving a class of
problems. For example, estimation theory (e.g. [36]) tells you that it is important to
model the dynamic behavior of the system (i.e. X = AX + BU-) and the measurement
process (i.e. Z = HX- + Gzi) as well as the specific form of an optimal estimator based
on these models. Estimation theory also allows you to determine any observability
limitations. Ideally, a design theory would have a formal structure. As Melsa and
Cohn [39] say in regards to decision and estimation theory:

"Although we treat such problems intuitively all the time, it is important
that we cast them into a more definite mathematical model in order to
develop a rigorous structure for stating them, solving them, and evaluating
their solution."

By a mathematical model we would not necessarily mean a numerical model, only
that the model have a formal logical structure.

A good design theory is not the solution to any particular problem; rather, it is a
tool useful in solving a whole class of problems.

3.1.5 The Need for a Design Theory for Algorithms

Historically, Electrical Engineering design theories (especially estimation -and control
theory) have been used to develop fire control algoithms. However, the modern fire
control problem requires a large variety of algorithms. Many of tihese problems are
either not naturally representable as estimation or control problems or the solutions
provided by these traditional theories are computationally intractable. For example,
the determination of an aircraft trajectory for attacking multiple ground targets in a
single pass can be set up as an optimal controls problem. However, because closed
form optimal solutions cannot be found, this leads to a computationally impractical
design. Further, the problem of selecting a trajectory for the attack of multiple
airborne targets cannot even be set up as a reasonable controls problem. The point
we are trying to make is that there is a need for a more general theory of algorithm
design. Our recognition of this need arose in considering fire control problems but
the need is pervasive in the application of computing power.

With the extensive literature on algorithms it seems surprising that there is not
a general theory of algorithm design. However, most of this literature is concerned
with the analysis of algorithms rather than their design. Even the literature on
algorithm design typically does not discuss how to create an algorithm; rather they tell
you how to apply known algorithms in various situations. When algorithm creation
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is discussed, it is in terms of "discover" or "invent" rather than design (e.g. "The
'discovery' by Cooley and Tukey in 1965 of a fast algorithm ... " [71 or "The creation
of an algorithm . .. , is an inventive process ... " [38] ).

Once connected with the problem of "discovery", we begin to wonder if a design
theory for algorithms is even possible. Reference [31] argues that it is not only
rossible to have a theory of the discovery process but that it is possible to automate
the process. While we think they are correct, this report is concerned with simply
trying to understand algorithm design in a formal theoretical sense. We feel that a
thorough understanding of the problem is the first step to a useful design theory and
that design assisted by an engineering theory would logically precede automation of
algorithm design.

3.1.6 Summary

This section attempts to show the practical relevance of Pattern Theory. We began
by discussing the importance of computing in offensive avionics; although the impor-
tance of computing could have been derived from many sources. We then point out
the special dependence that computing power has on algorithm design. Improved
hardware or software engineering are fine tuning compared to new algorithms which
create entirely new capabilities. After clarifying what we mean by a "design theory,"
we explain that a design theory for algorithms would be very beneficial and that such
a theory does not currently exist. The bottom line is that there is a strong, un-met,
need for a theory of algorithm design.

3.2 The Pattern Theory Approach
Pattern Theory is an attempt at an engineering design theory for algorithms. This
section will present the algorithm design problem in a way consistent with an engi-
neering theory. We begin by first expanding on our concept of a design theory.

3.2.1 The "Given and Find" Characterization of a Design
Theory

We will develop our concept of a design theory in terms of "givens" and "finds." Given
and Find are intermediate stages in going from the real problem to the real solution.
The design theory provides methods for relating the given problem statement to what
we want to find. However, there always remains the task of couching the real design
problem into a simplified problem of specific givens and finds such that the design
theory can be applied.

Many engineers first encounter a design theory in Statics. Therefore, we use a
problem from statics as our example, from [40]. The real problem is to design a roof
that will support whatever snow, wind, etc. that will stress it. The first step in going
from the "real problem" to the "given" for the design problem is to select some form
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of truss. For example, a Howe truss could be selected. This selection might be based
on the designer's recognition that it is appropriate for this class of problem, but is
outside the design theory. A second step in going from the "real problem" to the
"given" for the design problem is to make some assumptions about the loads that
will be applied to the truss. These assumptions take the form of a certain magnitude
force applied at certain points on the truss. These assumptions might be based on
the designer's knowledge of local weather, etc.; but again, this is outside the design
theory. We have gone from the "real problem" to a set of "givens." This part of
the design is not based on any "design theory," rather it depends upon the human
element in design.

The "real solution" to this problem might consist of a complete specification of
materials in the truss, the size and shape of the members of the truss, how the
members are joined, etc. The designer recognizes that if the forces in the members
can be found, then it would be easier to complete the real problem. For example,
a catalog could be used to select truss members on ce the maximum load on a given
member was known. Therefore, we say the "find" is the force in each member. Again,
going from the "find" to the "real solution" will not be aided by the design theory.
However, now that we have specific "givens" and "finds," we can apply the "design
theory" of Statics to connect these two. In particular, given the loads on a particular
truss we can solve for the forces in each member of the truss.

In summary, a design theory operates within the simplified environment of specific
"givens" and "finds." The messy problems of determining the "givens" from the real
problem and the real solution from the "finds" are outside the theory. Pattern Theory
is an attempt at a design theory in this sense for algorithms.

3.2.2 Definition, Analysis and Specialization

It is important that a design theory begin with a well-defined problem. Charles
Kettering is reported to have said:

"A problem well stated is a problem half solved."

Our approach to stating the problem is to first define a very general and abstract
problem (Section 3.3). A problem is well-defined when we can say precisely what is
given, what is to be found and the criteria by which the solutions are to be judged.
The problem will then be analyzed to determine how it might be partitioned into
simpler problems. Finally, we specialize to one of the simpler problems (Section 3.4.9).
We deliberately and explicitly set aside some aspects of the problem. There are two
purposes to this approach. First, it allows us to arrive at a well-defined and potentially
solvable problem. Second, it allows us to understand how our problem is a special
case of more general problems.
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3.3 The General Problem of Computational Sys-
tem Design

Here we develop the most general Pattern Theory problem. This problem is a central
part of many disciplines (c.f. Chapter 2). First we must deal with several rather
general, almost philosophical, issues. We will explain why we are especially interested
in recognizing patterns in functions, the meaning of a representation of a function,
and figures-of-merit for competing designs.

3.3.1 Computation and Functions

We can imagine trying to recognize patterns in all kinds of mathematical objects.
The examples of Section 2.1 were typically sequences. However, we believe that
functions have a unique importance when considering pattern finding in connection
with computation.

First of all, functions are a fundamental mathematical concept. A function f is a
set of ordered pairs from X x Y such that for all (x1,yi) and (X2,42) in f, if x, = Z2

then y, = Y2. This definition of a function only requires some set theory, order, and
logic as background.

The only trick to being a function is that there be only one output for any given
input. For example, in an Automatic Target Recognition setting our assumption is
that there i. ;:zctly one desired output (e.g. target type) for each input (e.g. an
image). This assunption does not preclude the output from having probabilities; in
this case our assumption only requires that there be exactly one desired output prob-
ability distribution (e.g. p(tank) = 0.1, p(truck) = 0.6, p(tree) = 0.2, ... ) for each
input. Our assumption does preclude those cases where there are a significant number
of inputs for which multiple possible outputs would be acceptable. For example, if
we consider outputs of either 0.99 or 1.0 to be acceptable then our assumption does
not hold. While this may seem to be the more common situation, it is possible to
define a codomain for almost any real problem such that the assumption does hold.
For example, we could define "0.99 or 1.0" as a single output value.

Functions are also abstractions of most of the traditional models of computation.
Language acceptance is a common model for computation in the theory of computing.
Language acceptance is a special case of a function; that is, a language acceptor is a
function from a set of strings into the binary set {accept, reject}. Problem solving is
a common model of computation in computing theory and some artificial intelligence
contexts. Problem solving is a function from a set of problem definitions into the set of
possible solutions. Decision making is also a function from the factors in the decision
into the set of possible decisions. Functions are a "show me" approach to modeling
knowledge. What a computer (or person) knows is exactly the set of questions that
it can answer. We would say that knowledge is well represented by a function from
a set of questions into a set of answers. Reference [49] discusses this relationship
between mathematical functions and knowledge at length. Many models of machine
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learning, e.g.[13, p.326] or [42, p.6], can also be interpreted as special cases of function
realization.

Non-function computation problems exist, such as the generation of one-way com-
munications (radio/TV) or clocks, but virtually all conventional computing is wel
modeled by functions.

In summary, a function is an extremely general and well-defined model for com-
putation. When we talk about computation we are talking about realizing a function.

3.3.2 Representation

The notion of representation is very important in Pattern Theory (see [49, pp.29-50]).
The design problem begins with some sort of a representation of a function and then
we want to find an efficient algorithm that will also be a representation of that same
function. Therefore, the design problem is one of translating representations.

The representation of a function is meaningful only if there is some agreed to
"representation system." The representation system is kind of like the syntax and
semantics of a language. It is the background knowledge that one must have to make
sense of a representation.

We do not have a formal definition of a "representation system." Think of rep-
resentation in the sense of communication. Whenever we represent a function, we
must assume that the reader has some knowledge that allows them to make sense
of the representation. This "knowledge" is what we are trying to specify with "rep-
resentation system." An important aiO unsolved problem of Pattern Theory (and
computing in general) is that of dealing with this idea of a representation system.
Sections 3.4.3 and 3.4.4 explain how we get around this problem for the PT 1 project.

The representation system used for defining the function to be computed is called
the "input representation system." Input comes from this being the input to the
design problem. PT 1 focused on tabular input representation systems. The repre-
sentation system used for the solution is called the "output representation system."
Again, output comes from this being the output of the design problem. PT 1 used
directed graphs with functions at each node for the output representation system.

In addition to the concept of a representation system, there are many forms of
representation within each system. Several classes of representation are identified as
examples of this idea.

First, there is the simple table definition of a function (e.g. Table 4.1). A table
seems to require the minimum possible representation system.

Secondly, there is the class of algorithmic representations of a function. These
representations give an algorithm for computing f(x) when given x. The representa-
tion f(x ) = ax + 2x - 1 is algorithmic. The representation system for this example
must include knowledge of arithmetic. A common situation in fire control algorithm
design is to have an algorithmic definition of a problem (often called a "truth-model")
that is too slow for airborne use. The design problem is to find a better algorithmic
representation.
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A third class of representation might be called the algorithmic inverse class. Rep-
resentations from this class provide algorithms that, when given y, produce X such
that y = f(x). An example of an algorithmic inverse representation of f is x = y',
where y = f(x). Therefore, when given y we can generate x using the representa-
tion; however, the representation does not explicitly tell us how to generate y when
given x. The "vision" problem is a more practical example of an algorithmic inverse
representation. For the vision problem, the function that we want to realize (i.e. a
mapping from a two-dimensional image into a three-dimensional model of a scene) is
easily represented in inverse form. That is, we can use geometric projection, which
is algorithmic, to determine what two-dimensional image would result from a given
three-dimensional scene.

Our fourth class of representation is the algorithmic NP class. The "NP" comes
from the non-deterministic polynomial set of functions as studied in time complexity
which have this form of representation. For an algorithmic NP representation, we
must be given both x and y and then the representation is an algorit m that will
determine if y = f(x). An example of this class of representation is when the function
has some equation as its input and solutions to the equation as its outputs. When
given the equation and a candidate solution, it is easy to tell if the solution fits.

A fifth class of representation is called the function predicate class. In this class,
the function is represented by some algorithmic predicate on the whole function. An
example of this class is a differential equation.

A final class might be any mix of the above classes. For example, a function
can be represented by a differential equation (function predicate class) and boundary
conditions (table class).

3.3.3 Figures-of-Merit

There is one other idea that needs to be developed before we can state the general
problem. This idea has to do with what constitutes a "good" design. A well designed
computational system should have a number of properties. We divide these properties
into two general categories.

One category has to do with the accuracy of the computational system. That is,
how often does it produce errors or no output at all. Errors could be defined as the
difference between the desired function and the function actually computed. There
are many options for defining the difference between functions. For example, if X
has finite cardinality and Y is the set of real numbers then the difference (d) between
functions f : X --+ Y and 9: X - Y might be d = E .v I fy(x) - g(x) 1. For many
computational problems, we want no errors. For other problems, avoiding all errors
is either simply not possible or not worth the increased cost.

The second category of properties concerns monetary costs. There are costs asso-
ciated with arriving at the design, physically realizing the design and using the design.
In arriving at the design there are the costs of gathering samples of a function or of
performing experiments to narrow the possible set of functions. We associate these
costs with the definition problem (see [50]). The cost of realizing a design includes the
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cost of purchasing and assembling equipment. This is the cost of concern in circuit
design (e.g. [21]). The cost of using the design is most often thought of in terms of the
run-time or memory use on a sequential computer (e.g. [7], but is also reflected in cir-
cuit design as "depth." While there is considerable latitude for trading-off equipment
cost versus run-time, we think this trade-off is between different ways of exploiting
the singular pattern-ness of a function rather than between different kinds of patterns.
Therefore, we want our measure of pattern-ness to be high whenever it is possible
to realize a function with low equipment cost and reasonable run-time or with small
run-time and reasonable equipment cost.

3.3.4 Problem Statement

We now state the general computation system design problem of PT. The statement
of the problem is not sufficiently precise to be useful in the design theory sense. The
purpose in stating this general problem (a problem that includes virtually everything
anybody does with computational systems) is that it will allow us to show how the
PT 1 problem (Section 3.4) is a special case of the general problem.

We state the problem in terms of what is given and what is to be found., For
the general problem, we are given an input representation system, a set of functions
represented in the input representation system, a set of output representatioxi systems
and figures-of-merit.

The "input representation system" is the language in which the function(s) to be
computed is given. Sometimes, if there is a precise definition of the function, the
input representation system might be little more than arithmetic. For example, the
function might be given as: "compute y when given x where y = x2+2x+3." However,
when the function is given in vague terms, the representation system might include a
natural language as well as many value judgements. For example, a function might be
given as: "compute y when given x, where x is time and y is the intensity and color
of the video signal of a new hit TV show." Although it may always be difficult, and
sometimes impossible, to specify the input representation system, we think that such
a characterization is a necessary step towards a theoretical engineering understanding
of the problem.

In addition to the input representation system, there must be representations (ex-
pressed in the input representation system) that define the specific functions that
we want to compute. In our general statement of the computational system design
problem we allow for there to be a set of functions to be computed rather than just
a single function. We can imagine that when computing several functions, the com-
putation of one function might be used in computing a second function. Therefore,
the design problem is somewhat different when computing more than one function.
It turns out that it is not as different as we once thought (see Section 6.2.2).

The design of a "gener 11 purpose" computer requires that the most general prob-
lem not only allow for a set of functions, but that there be some super set of functions
and that we do not know which exact subset is to be computed. The idea here is
that there is some set of functions that you might potentially want to compute, but
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you do not know exactly which ones. Therefore, the design problem is to come up
with the computer that would do well on average for any subset of functions that
might be specified later. This is the problem faced by people who design general
purpose computers. As with the representation systems, it is not easy to specify the
set of given functions but this specification is necessary for a theoretical engineering
treatment of the problem. Designing algorithms or electronic circuits is a special case
where the functions to be computed are known ahead of time.

The output representation system is the representation system that will be used
to express the design. For circuit design (including the design of general purpose
computers) the output representation system typically consists of some set of circuit
elements. In algorithm design the output representation system might be a partic-
ular computer language. We said that the "givens" might include a set of output
representation systems. Why a set? In the most general design problem we include
the problem of selecting the output representation system. By specifying an output
representation system, we are limiting the scope of possible solutions. Limiting the
scope of solutions is not desirable in itself but is necessary for an engineering theory
of the problem. This scope limiting part of the problem specification is characteristic
of other engineering design theories. For example, classical control theory limits con-
sideration to control laws based upon linear combinations of the system states and
the desired states.

The figures-of-merit reflect error, the cost of the output representation systems
and the cost of individual representations. Differences between the given function and
the realized function is what we are calling "error." We sometimes do not insist that
the error be zero. Instead we want it to be close but not to the point of compromising
the other considerations (especially cost). Therefore, the "givens" must reflect our
relative tolerance for errors and cost. The cost of the output representation system
is essentially the cost of the computer hardware. The cost of the individual repre-
sentation is sometimes the monetary cost of the hardware (as in circuit design) and
sometimes the cost of execution (for example the run-time of an algorithm).

We stated the problem in terms of what is given and what is to be found. For the
general problem, we are given an input representation system, the representations of
a set of functions, a set of output representation systems and figures-of-merit. The
problem then is to find an output representation system (from the set given) and the
representations of a subset of the given functions such that the figures-of-merit are
optimized.

3.4 The Pattern Theory 1 Problem as a Special
Problem in Computational System Design

Recall that the objective is to isolate that part of traditional algorithm design that
depends on this special character of patterns that we have discussed. This problem
will be analyzed and the results extended back towards more practical problems.
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There are two basic mechanisms for doing this isolation. First we can partition
the general problem into sub-problems, allowing us to set aside some very difficult
practical problems that are not directly involved in the pattern issues. The retained
portion of the partition will have the pattern issues more accessible. The second
mechanism is to simplify the general problem, always retaining a non-trivial pattern
finding problem.

3.4.1 Special Rather Than General Purpose Computers

The Pattern Theory (PT) 1 problem is concerned only with realizing a set of func-
tions that are known ahead of time. As discussed above, when designing general
purpose computers, we do not know what exact functions we will eventually be com-
puting. The design of "special purpose" computers includes circuit design as well as
specific uses of general purpose computers. Therefore, our sense of "special purpose"
computer design includes algorithm design,

3.4.2 Single Function Realization

For the general problem we allowed for there to be several functions to be realized.
The PT 1 is concerned with realizing only a single function. Realizing a single function
seemed to be a simpler problem that still requires pattern finding in a non-trivial
sense. It turns out that it is not possible to get completely away from realizing
multiple functions because when you decompose a single function you are creating
multiple "sub-functions" that must be realized. The Lupanov representation (see [54,
pp.116-118]) re-uses computations of sub-functions in realizing individual functions.
However, for the relatively small number of variables considered in the PT 1 study,
this re-use technique is not effective. Therefore, it is meaningful to consider single
function realization as a further specialization to the general computing problem.

3.4.3 Input Representation System

For the general computing problem, we did not specify a particular input represen-
tation system. In fact, we did not even give a formal definition of a representation
system. For the PT 1 problem we chose to limit consideration to input functions
represented as tables. The representation system for tables is trivial; that is, the
knowledge required to use a table is trivial. This specialization allows PT I to avoid
having to deal with the messy problem of input representation systems. However, the
pattern finding problem when given a function in the form of a table is not trivial.
In fact, this is kind of a worst case for pattern finding. When a function is specified
in some non-trivial representation system there may be some clues as to the patterns
in the function. However, when the function is given as a table, there are no clues.
As desired, this specialization results in a cleaner theoretical problem while retaining
the essential pattern finding problem.
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3.4.4 Output Representation System

The output representation system for PT 1 will be kept at a fairly abstract level.
Therefore, selecting an output representation system does not require that we select
a specific programming language or a specific set of circuit elements. The output
representation system for PT 1 is a directed graph with a function associated with
each node. The details are &fined in Chapter 4. On the surface it may appear that
PT 1 specializes to combinational machines with a loss of applicability to sequential
machines and, in fact, we do represent our decompositions combinationally. However,
because of the connection between time (sequential) complexity and size (combina-
tional) complexity, the patterns found in the decomposition process are not essentially
different than sequential patterns (see Section 4.4). Therefore, although PT 1 does
specialize to combinational output representation systems, it does so without loss of
generality.

3.4.5 Functions

PT 1 makes a number of specializations to the kind of functions considered. First
of all, PT 1 is only concerned with finite functions. Although it has been useful
to use infinite functions (to the exclusion of finite functions, i.e. all finite functions
are computable and have complexity 0(1)) in most traditional computing theory
paradigms, there is no greater generality in infinite functions. It is simply a matter of
convenience. We feel that any real problem can be modeled finitely, whether or not
the solution is eventually implemented in an analog or discrete system. Therefore,
although unusual, our specialization to finite functions is without loss of generality.

We are especially interested in mappings on domains whose elements have parts.
That is, the inputs are made up of multiple parts. There are two common models
for these multiple part inputs, the string and the vector. Vectors are thought of as
elements of a product of sets (as in X1 x X 2 x X 3 x ... x Xn). All the vectors in
a set typically have the same length, that is dimension, not metric length. Infinite-
dimensional vectors are commonly used in Real Analysis. Strings are thought of
as a sequence of drawings from a single set. Strings are typically not all the same
length. Strings may also have.infinite length. Either is sufficiently general to model
the other. All strings of length n or less from an alphabet E can be modeled as
vector elements of (E U {blankl}) n, where vectors with a blank left of a non-blank
are not included. Similarly, vectors from X1 x X 2 x X 3 x ... x X, can be modeled
as those strings of length n from the alphabet E = Ut'_Xj, with the i' h component
from Xi. Vectors are especially common models in Electrical Engineering applica-
tions such as Circuit Design, Estimation Theory, Control Theory, and Digital Signal
Processing. String based models are especially common in Computer Science, e.g.
compilation problems, and are used in Computability Theory. Vectors have slightly
more transparent combinatorics (see Appendix A). There are approximately twice
as many strings as vectors for a given maximum length. While this difference might
be important in some particular instance, the trends are the same for functions on a
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set of vectors as for functions on a set of strings. The ideas in this report could be
developed exclusively in terms of strings or vectors; without any significant difference
in the fundament4 results. We use vectors in the quantitative discussions because of
their simplified, combinatorics; however, we also use the string nomenclature in order
to highlight relationships, to the traditional theory of computing.

In addition to limiting, consideration to finite functions, PT 1 limits consideration
to binary functions. Binary functions are functions of the form f : {0, 1}" - 0, }.
Functions on any other, finite domain can be modeled as binary functions. Also, func-
tions with other codomains can be modeled with multiple binary functions. Therefore,
there is little loss of generality in limiting consideration to binary functions.

3.4.6 Definition versus Realization
In reference [51] we made a distinction between the problem of choosing what function
to compute (the definition problem), and the problem of figuring out how to compute
the chosen function (the. realization problem). Even in our general statement of the
computing problem we had already limited consideration to the realization prob-
lem. The Pattern Theory idea is to associate patterns and simplicity. Patterns are
those functions with economi c realizations; these may be called "realization patterns."

There may also be, in this pragmatic sense, "definition patterns." That is, a function
has a definition pattern if it is easy to define, for example, amenable to interpolation.
It is not clear whether or not these two concepts of pattern can be unified; but for
PT 1, pattern is addressed only in the realization pattern sense.

3.4.7 Figure-of-Merit for the PT 1 Problem

The figure-of-merits for the general problem included a consideration for error in the
realized function. This factor is important in real computational system design (see
[61]), but perhaps not as important as we once thought (see Section 6.6). PT 1 limits
consideration to exact realizations (as in [48, p.33]). This specialization is made at

the expense of generality to allow us to focus on the pattern issues. Although finding
the pattern in a function that allows its exact computation is a special case of finding
the patterns that allow functions to be approximately computed, it is by n means
trivial. We think the essential character of the pattern finding problem is preserved in
the PT 1 problem and made more readily accessible by setting aside the error issues.
Section 6.6 further discusses the cost-error trade-offs.

The general problem also included several measures of cost (hardware costs, run-
time, etc.). A central thesis of the Pattern Theory paradigm is that all these costs
are well represented (with respect to our pattern finding problem) in one abstract
measure, Decomposed Function Cardinality. Chapter 4 explains and supports this
thesis. Therefore, the PT 1 problem specializes to this single measure with very little
loss of generality.
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3.4.8 Kinds of Patterns

We discussed previously that functions have a property called "realization pattern-
ness." That is, some functions have simple realizations while others do not. Of course,
whether or not a function has a simple realization is relative to the representation
system. Reference [481 develops the idea that there are two fundamental mechanisms
that allow simple realizations. That is, there are two kinds of realization patterns.
One kind is based on the relationship between a function and physical processes (call
this kind "physical patterns"). The second kind is based solely on the decomposability
of the function (call this kind "decomposition patterns"). PT 1 is concerned only with
this second kind of realization patterns.

There is some definite loss of generality here. Some functions are naturally realized
by some devices and exploiting this is essential in some real problems, for example
the computation performed by an optical lens. However, applications of general
purpose computers seem to rely on decomposition patterns. Functions with physical
realizations may also have decomposition pattern-ness (e.g. addition can be realized
physically by many means and addition also has high decomposition pattern-ness).
There seems to be a problem here for the physicists to worry about. Why does the
natural world have such a high degree of decomposition pattern-ness?

3.4.9 Problem Statement

Recall that the objective is to isolate that part of traditional algorithm design that
depends on this special character of patterns that we have discussed.

Through the specializations discussed above, we arrive at the PT 1 problem.
That is, given a single finite binary function completely defined as a table, find an
exact combinational realization that minimizes the Decomposed Function Cardinality
measure.

We have gone from a very general, but somewhat vague statement of computa-
tional system design to a less general but definite statement that retains the essential
pattern finding problem.

3.5 Summary

This chapter explained the need for an algorithm design theory and defined the Pat-
tern Theory paradigm as a potential approach.

The need for an algorithm design theory was shown by starting with the obvious
need for offensive avionics, showing how important computing power is in offensive
avionics, showing how important algorithm design is in computing power and then
finally showing how important an engineering theory is to design. Although this de-
velopment could have been based on many different kinds of problems, the importance
of an algorithm design theory to offensive avionics is sufficient to justify our research.

The Pattern Theory paradigm was defined by first discussing the form of a problem
definition for an engineering theory. We then stated the most general problem that
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might be characterized as, "computational system design." Finally, we, made explicit
specializations to this general problem to arrive at the PT 1 problem, i.e. the problem
of designing exact combinational realizations of binary functions, given as atable, such
that the Decomposed Function Cardinality (DFC) is minimized. The PT 1 problem
is, much simpler than the. general problem; yet it retains the essential pattern finding
problem that is our focus.
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Chapter 4

Decomposed Function Cardinality
as a Measure of Pattern-ness

4.1 Introduction

The central thesis of Pattern Theory is that function decomposition is a way to get at
the essential idea of computational complexity. The connection between decomposi-
tion and computation has come up before. The "divide and conquer" principle (e.g. [7,
p.3]) is essentially a suggestion that decomposition is a good idea for algorithm de-
sign. The "chunking" model of learning (see [43]) is a form of function decomposition.
The Abductive Reasoning paradigm represents functions by compositions of simpler
functions. Function decomposition is also a generalization of representations that
use arithmetic or logical operators. When we were first exposed to pattern recogni-
tion and machine learning, we were impressed with the prominent role of arithmetic
operators, e.g. "... the adaptive linear combiner, the critical component of virtually
all practical adaptive systems."1 We asked ourselves, "What makes arithmetic so
special?" Why should it have any special powers? We now believe the answer lies
in the fact that arithmetic operators are members of a common class of decomposi-
tions. However, there are other classes and that is why it is important to understand
decomposition as the underlying principle with linear combiners as a special case.

We propose Decomposed Function Cardinality (DFC) as a quantification of a
function's pattern-ness. Section 4.2 contains a formal definition of DFC. Informally,
we base our measure on the cardinality of a function. A function is a set of ordered
pairs and, as with any set, a function has some cardinality. That is, for finite functions,
a function has some number of elements. Function h of Table 4.1 has cardinality 8
while functions f and g of Table 4.2 have cardinality 16.

Now we need to distinguish between functions of the same cardinality that have
different pattern-ness. First recognize that some functions can be represented as
a composition of smaller functions. For example, f in Table 4.2 can be written

'From the UCLA Adaptive Neural Network and Adaptive Filters Course announcement, Bernard
Widrow and Mark A. Cluck Instructors, 1991.
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01 02 03 h(xlX2,X3)
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Table 4.1: Function Cardinality of h is 8

-TI -T2 X3 -T4_ f(2:170,1X3,704) g(-Tl,-2, Z3,:4)

0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 1
0 0 1 1 0 0
0 1 0 0 1 1
0 1 0 1 0 1
0 1 1 0 0 0
0 1 1 1 0 0
1 0 0 0 1 1
1 0 0 1 0 0
1 0 1 0 0 0
1 0 1 1 0 0
1 1 0 0 0 1

1 1 0 1 0 0
1 11 0 1 1

1111 0 0

Table 4.2: The Function Cardinality of f and g is 16
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Figure 4.1: f as a Composition of Smaller Functions

Zl z2 F(zi,z 2) q(Zl),Z2) __(_iZ2)

0 0 1 0 0
0 1 0 1 0
1 0 0 1 0
11 0 0 1

Table 4.3: Functions that Compose f

f~zl~z X 3, 4) = F(4O(4(zi, X2), ), X x4 ). This representation of f can be diagrammed
as in Figure 4.1 with F, O and Ob defined in Table 4.3. Notice that the cardinality of
F, s0 and b is 4 each. The sum of their cardinalities is 12. Therefore, f, a function
of cardinality 16 can be represented by a composition of functions whose combined
cardinality is only 12. We say that f has a Decomposed Function Cardinality of 12.
Most functions, such as g in Table 4.2, cannot be composed from smaller functions
in this way. Some functions have more than one decomposition; a decomposition is a
representation of a function as a composition of smaller functions. When a function
has more than one decomposition, DFC is defined to be the minimum combined
component cardinality of all the decompositions of that function. The familiar de-
composition of addition would look like Figure 4.2 with components as illustrated in
Tables 4.1 and 4.1. The cardinality of a, and Cl is 4 each, the cardinality of a2, a3 ,
c2 and c3 is 8 each; therefore, the DFC of adding two numbers of three bits each is
4+4+8+8+8+8 =40.

The palindrome acceptor on six variables is a function with cardinality 64 (see Ta-
ble 4.1). Figure 4.3 is a decomposition of a palindrome acceptor with Tables 4.1 and
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X3 aIy4

x 6a 
y3

x5

x4 c

Figure 4.2: Decomposition of Addition

X1X2X 3  X4X5X6 YI Y2 Y3 Y/4

000 000 0 0 0 0
000 ~001 0 0 0 1

010 110 1 0 0 0

1l1 110 1 1 0 1
il1 111 1 1 1 0

Table 4.4: Addition on Six Variables (Four Output Functions)

X3 X6 a, C,
00 0
01 1 01
10) 1 0

11 0 11
Table 4.5: Addition Components a, and c, (XOR an~d AND)
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CI X 2 X5 a 2 c 2

000 0 0
001 1 0
010 1 0
011 0 1
100 1 0

101 0 1
110 0 1
111 1 I

Table 4.6: Addition Components a2 and c2

Xl
x6

x2

x5

X3

x4

Figure 4.3: Decomposition of a Palindrome Acceptor

4.1 showing typical components. The DFC of the palindrome acceptor on six vari-
ables is 4 + 4 + 4 + 8 = 20.

Figure 4.4 is a decomposition of the prime number acceptor on 9 variables with
Table 4.1 showing typical components. The DFC of this particular decomposition
for the prime number acceptor for inputs between 0 and 511 is 344.

Figure 4.5 is a decomposition of the function which declares whether a pixel should
be black or white given the coordinates of that pixel for the 16 x 16 pixel image in
Figure 4.6. Tables 4.1 through 4.1 define the components of this decomposition. The
DFC of the "R" function is 36. Note that variables x., and x are not needed.

All these functions have DFC's less than the cardinality of the undecomposed
function. We would consider each of these functions to be patterned. The palindrome
acceptor (If] = 26 - 64 versus DFC = 20) and the "R" function ([fJ = 28 = 256
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X1X 2 X3 X4 X5 X 6 YI

000000 1
000001 0

000010 0

001011 0
001100 1
001101 0

011101 0
011110 1
011111 0

111101 0
111110 0
111111 1

Table 4.7: Palindrome Acceptor on Six Variables

100 11
01 0
10 0

11001

Table 4.8: Palindrome Acceptor Component a, (NOT XOR)

a1a 2a3  b
000 0
001 0
010 0
011 0
100 0
101 0
110 0
111 1

Table 4.9: Palindrome Acceptor Component b (AND)
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x2

X5 al

x65

q - X8

07 _____________

X9

07

X9

Figure 4.4: Decomposition of a Prime Number Acceptor

input a, a2

000 0 0
001 1 0
010 1 1
011 1 0
100 0 0
101 0 0
110 1 0
111 1 1

Table 4.10: Prime Number Acceptor Components a, and a2

X5X,3X7 c d
000 0 0

*0011 0
010 1 0
011 0 0
100 1 0
101 1 0
110 1 10
ill 0

Table 4.11: Letter R Components c and d
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x2 _____________

'(3 y__ 
_ _ _ _ _ _ _ _ _

'(5

X6
0(

Figure 4.5: Decomposition of an Image

Figure 4.6: An Image of "IV'
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XIX,2a 3c a
*0000 0

0001 0
0010 0
0011 0
0100 0
0101 1
0110 0
0111 1
1000 0
1001 1
1010 0
1011 0
1100 1
1101 0
1110 1
1111 1

Table 4.12: Letter R Component a

ad
*0 0

01
10

Table 4.13: Letter Rt Component b
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versus DFC = 36) are very patterned, while the prime number acceptor ([f] = 29 -
512 versus DFC = 344) is only slightly patterned.

The components of a decomposition can be any kind of function, not just the usual
logical functions (AND, OR, XOR, etc.). Note also that some of these decompositions
are very familiar (e.g. addition or the palindrome acceptor) while others were not
previously known (e.g. the primality test or the "').

We believe that DFC is a very robust measure of pattern-ness. As in the previous
examples, where completely different kinds of patterns are involved, a small DFC
(compared to the cardinality of the undecomposed function) is truly indicative of
pattern-ness.

The development of DFC began at the Air'Force Institute of Technology (AFIT)
where Matthew Kabrisky stressed the fundamental importance of features in recog-
nizer design. DFC resulted from an attempt to generalize the geometric pattern
recognition concept of "features." We realized that features are just intermediate
stages in the data flow that promote a computationaly efficient realization of a func-
tion. Function decomposition also produces these intermediate stages of data for
exactly the same purpose. DFC allows for an explanation of pattern-ness that covers
the common pattern recognition paradigms, i.e. geometric, syntactic and artificial
intelligence approaches [49'. It seems that the one common factor in all these ap-
proaches was this decomposition idea. The idea gained further credence when we
realized that the "Divide and Conquer" approach to algorithm design is essentially a
function decomposition approach. We were eventually directed 2 to some theoretical
developments of function decomposition in the Switching Theory literature. Here
again is this idea in yet another context.

In addition to these informal arguments for the robustness of DFC as a measure
of pattern-ness there are several more objective supporting arguments. Chapter 6
empirically relates DFC to factors in data compression and to complexity as rated
by people. The remainder of this chapter will report on the relationship between
DFC and three of the most common measures of computational complexity. First
we consider program length. By treating DFC as a component of program length we
can apply some useful results from Information Theory (see [12, 23)). We then relate
DFC to time complexity. Under reasonable assumptions one can prove that a small
time complexity implies a small DFC (see [54]). Finally, we point out that DFC is a
special case of circuit size complexity. By connecting DFC to these traditional mea-
sures (i.e. program length, time complexity and circuit size complexity) we support
the contention that DFC is a reflection of a very general property, as we would hope
would be the case for a measure of pattern-ness.

2By Frank Brown of AFIT.
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4.2 Decomposed Function Cardinality

We need a more formal notation for the representation of a function's decomposition
to define Decomposed Function Cardinality (DFC). For f : X1 x X 2 x... x X, -4 Y, a
representation r! of f is a finite, acyclic, directed graph G and a set of finite functions
P. 'That is, r! = (G, P). G and P are defined below.

It will simplify the notation if we rename some sets. We will use Ui to represent
input (Xj), intermediate (Z4), and output (Y) sets. In particular, let

IXi i = 1, 2, ....

Ui = Zi-, i = n+1, n+2, ..., n+[P]-1
Y i= n+[P].

In this notation,
f:U 1 XU 2 X ... X Un -- Un+[p],

and U,+1, U,+2 ,... Un+fp]-i are the intermediate ("feature") sets that are created as
a result of the decomposition.

The graph (G) consists of a set of vertices (V) and a set of arcs (A). That is,
G = (V, A). There is a vertex in the graph for each variable in the representation,
i.e. V = {uI,u 2,. .. ,u,+[p}. The lower case ui is a variable for the set Uj. A is a
subset of V x V, called a set of arcs. Indegree of ui is 0 for i = 1,2,... ,n; outdegree
of un+(p] is 0; indegree of un+P] is 1; indegree and outdegree of ui are not 0 for
i = n+ 1,n+2,...,n+ [P]- 1.

P = {PhP2,... ,P[P} is a set of nonempty and nonconstant functions of the fol-
lowing form:

PJ :Xui -4 uJ, =n + 1,n + 2,...,n + [P],

iE j

where Ij is a set of the indices of the input variables for pj. That is, with I the set of
positive integers,

Ij = {i E I I (ui,u ) E A}.

A and P are such that (ui, uj) E A if and only if there exists a pj E P which has
i E Ij. Let nj be the number of variables input to pj. That is, nj = [I].

In summary,
rf= (G,P),
G =(V, A),

V = {Ui)U 2, ... ,Un+[PJ},

AC V xV,

P = {PHP2,... ,P(P},

and
P: T i _ j

E7tj
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DFC (c.f. [48, pp.37-481: ) is used with two meanings. First, it is used to denote
the DFC of a particular representation of function,

[P]
DFC( r) = Z(llEUj]).

j=1 iEzj

When U, = {0,1} for all j, this becomes:

[P]
DFC(rf) - 2".

j=1

We are occasionally interested in using the actual cardinality [pj] of the component
functions rather than 2"j . We call this Decomposed Partial Function Cardinality
(DPFC),

(P]
DPFC(rf) = [pj].

j=1

When all the component functions of a representation are total the two measures
DFC and DPFC are the same.

When we talk about the DFC of a function, we mean the DFC of that function's
optimal representation. If 7R is the set of all possible representations then

DFC(f) = minimum over rf E 1 of (DFC(rf)).

The DPFC of a function is similarly defined. We also use simply DFC (or DPFC)
when the particular function or representation is made clear by the context.

4.3 Decompositions Encoded as Programs

4.3.1 Introduction

We want to relate DFC to program length as developed in Appendix A. In partic-
ular, we want to formalize how representations of decompositions are special cases
of programs. The cost function on representations that then corresponds to pro-
gram length is of special interest since we know a number of properties of program
length. We must also address the concern that a decomposition of a function consists
of both component functions and their interconnections while DFC only measures
the complexity of the component functions. After all, it could be the case that the
complexity of the interconnections is independently important in the true measure of
pattern-ness.

We will be concerned with a binary function f:{O, 1}" -+ {0, 1} and representations
of such functions denoted rf. We will also be interested in the optimal representation

'In the notation of [481, DFC is exactly fr(r,-opt) when w(r) = 1 for all r in R' and R' is the
set of all Boolean functions of the form f : {O, 1}n --+ {O, 1}"' , m and n1 positive integers.
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of a given function f which will be denoted Rf. Let A* denote the set of all finite
strings from alphabet A. Define an encoding procedure e : -4 {0, 1}*, where R is
the set of all possible representations. We prove that e(rf) is a program in the formal
sense of Appendix A. We define a cost function on encodings as simply their string
length, L(e(rf)). L is like a combinational form of Kolmogorov complexity and has
many of its properties (see [33] and [54, Section 5.7]). We use the relationships of
Appendix A to prove a number of properties of e. In particular we prove that for all
f 2(n, + 1) < L(e(Rf)) < 2"n + 1,

there exists a function f such that

L(e(Rf)) = 2" + 1,

and that
2n < average (L(e(Rf))) < 2" + 1.

With respect to the concern that DFC does not reflect the interconnection complexity,
we prove that if DFC is small then L(e(Rj)) (which does reflect interconnection
complexity) is also small.

4.3.2 Encoding Procedure

We now define a method for encoding decompositions into binary strings. The en-
coding procedure produces a binary string e(rf) which is an identifier of a unique
function of the form f: {0,1}" {O, 1}. The procedure for generating encodings is
defined on RV, a subset of R. In particular, using the notation of Section 4.2, RV is
the subset of R such that:

1. IF] < 2",

2. (pi -< 2" for i = 1, 2,...,e]

3. [A] < 2".

We will prove that although VI is a proper subset of 1R, RI includes all optimal
representations. We use the notation ra] to specify the smallest integer that is greater
than or equal to the real number a. Similarly, La] is the largest integer less than or
equal to a. There is one other relationship which is a direct consequence of 1 above.

Theorem 4.1 For any r1 in R' an arc in A can be specified with n 2 bits for n > 4.

Proof:
By definition of V, [V] < (n+[P]). Thus, a vi in V can be specified with rlog(n+ [P])]
bits (log to the base 2). By constraint 1 on 7V', [log(n + [P])] < rlog(n + 2")] <
rn log(n)]. Finally, since an arc can be defined by its head and tail vertices, an arc
can be specified with 2[rnlog(n)] bits, which is less than or equal to n 2 for n > 4.
1

49



The objective of the following encoding scheme is to encode any reasonable rf
into as short a binary string as possible while keeping a manageable expression for
L(e(rf)). We assume that n is known. If n is not known, a unary representation of n
using n + 1 bits could be added to the front of the encoding. The encoding- assumes
that all functions involved are total. If a partial function is involved, it can be made
total by arbitrarily assigning all Don't-Cares to be 0. The encoding procedure is as
follows:

1. The first bit of e(ri)) indicates whether or not the function is decomposed.
When this bit is 0, the function is not decomposed and the rest of the program
lists, in the order of the domain of f, all the images of f. When this bit is 1
the rest of the encoding is as follows.

2. The next n bits specify [P], which is possible -by the first constraint on V'.

3. If [P] is zero then f is either a constant or a projection of one of its variables.
When [P] is zero the next n + 1 bits of the encoding indicate which constant
or projection function. If f is a projection of the ijh variable then the ijh of
the first n bits is one and the others are zero. If f is a constant, which will
be indicated by the first n bits being all zero, then the n + 11h bit indicates
which constant function is f. The total encoding of any constant or projection
function therefore requires 2(n + 1) bits. If f is not a constant or projection
function then [P] is not zero-and the encoding proceeds as follows.

4. The encoding repeats the following for i = 1 ... [P]

a. The first n bits specify [Pi], which is possible by the second constraint on R'.

b. The next [pi] bits specify pi.

5. The next n bits of the program specify [A], which is possible by the third
constraint on '.

6. The encoding then repeats the following for i = 1 ... [A]. The ith arc is specified
by n 2 bits, which is possible by Theorem 4.1.

4.3.3 Length of an Encoding

We now develop the expression for the length of the string which results from the
encoding procedure.

Theorem 4.2 If[P] = 0 then L(e(rf)) = 2(n+ 1); if [P] = 1 then L(e(r)) 1+ 2";
otherwise L(e(rf)) = 1 + 2n + n2[A] + niP] + DFC(f).
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Proof:
When [P) = 0 there is the bit of step 1, the n bits of step 2 and the n + 1 bits of step
3. When [P] = 1, the worst case is when there are no vacuous variables and then
there is the bit of step 1 and the 2n bits of f. Otherwise: Step 1 uses 1 bit. Step 2
uses n bits. Step 4 uses a sum as i = 1, 2,..., [P] of the bits required for part a) plus
the bits required for part b). Part a) requires n bits. Part b) requires [Pd] bits. The
total number of bits required for Step 4 then is:

[P] IP]

E(n + [pi) = n[P] + -pi] = n[P] + DFC(f).
i=1 i=1

Step 5 uses n bits. Step 6 uses a sum as i = 1 to [A] of the bits required for an arc.
An arc requires n2 bits, assuming n > 4. The total number of bits required for Step
6 then is:

(A)

8=1

Therefore,

L(e(rf)) = 1 + n + n[P] + DFC(f) + n + n 2[A] = 1 + 2n + n2[A] + n[P] + DFC(f).

0

4.3.4 VZ' Includes All Optimal Representations

As mentioned earlier, R' is a proper subset of R ; for example, we could define an r!
with arbitrarily many identity functions so [P] would be larger than that allowed for
encoding. However, RI includes most reasonable representations and we prove that RI
includes all "optimal" representations. For every f, define re-opt as a representation
of f such that L(e(rf-,pj)) <_ L(e(rf)) for all rf that represent f. In order to prove
that all optimal representations are in R! we need several results which we develop
now.

Theorem 4.3 For n > 3, 2(n + 1) < L(e(rj-oft)) 1 + 2".

Proof:
The right inequality follows since an arbitrary f has a representation with [P] = 1
(i.e. p = f) and whose length is 1 + 2'. The left inequality follows immediately
if rf is not a decomposition. If rf is a decomposition then either, L(e(r1 )) =

1 + 2n + n [A] + n[P + DFC(f) 2(n + 1) or L(e(rf)) = 2(n + 1).
0)

The DFC of a total function cannot be greater than its cardinality.

Theorem 4.4 DFC(f) 2n.
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Proof:
From Theorem 4.3, L(e(rf-pt)),:_ 1 + 2". By Theorem 4.2, 1 +-2n + n 2[A] + ni[P] +
DFC(f) < 1 + 2" or 2n + n2 [A] [+ I[P] + DFC(f) < 2". Since all the terms on the
left are positive, each term is less than or equal to 2n. In particular, DFC(f) < 2".
0

No component of a decomposition can be larger than the whole DFC.

Theorem 4.5 [pd 2" fori = 1,2,...,[P].

Proof:
From Theorem 4.4, DFC(f) _ 2n. Since all the [pi] terms that sum to DFC(f) are
positive, each term must be less than or equal to 2".
0

The number of components cannot exceed the DFC.

Theorem 4.6 [P] < 2".

Proof:
n[P] is a term in L(e(rfopt)) by Theorem 4.2 and must be less than or equal to 2n

by Theorem 4.3. Finally, since n > 1 we have [P] 2n.

0

The number of arcs cannot exceed the DFC.

Theorem 4.7 [A] < 2".

Proof:
Follows as in Theorem 4.6.
0

Finally we can prove that R! -includes all optimal representations.

Theorem 4.8 For all f of the form f : {O, 1}" -- {0, 1}, rfopt E 1V.

Proof:
Follows from Theorems 4.5, 4.6, and 4.7 and the definition of 7.'.
0

4.3.5 Properties of Encodings

We now can relate the encoded representations to the programs of Appendix A.

Theorem 4.9 e(rf) is a program.
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Proof:
The set of e(rf) for all rf E 7! is a language P satisfying the prefix condition. For
F as the set of all functions of the form f : {0, 1}n, -* {O, 1} define M : P -* F such
that M(e(rf)) = f. Under these conditions, (P, F, M) form a programmable machine
as defined in Appendix A.
0

Because e(rf) is a program, all the results about programs apply to e(rf). We
want to highlight a few of these results in the present context.

Theorem 4.10 There ezists a function f such that L(e(rf-opt)) = 1 + 2n.

Proof:
Suppose to the contrary that no such function existed. That is, the worst cost of any
function is 2" or less. We know there exist functions with cost strictly less than 2",
e.g. a constant function. In this situation the average L(e(rf)) is strictly less than
2"; that is, we have an average of a set of finite numbers containing some numbers
less than 2" but containing no numbers greater than 2". However, since e(rf) is a
program the average L(e(rf)) being strictly less than 2" contradicts Theorem A.16.
Therefore the supposition is false and the theorem is proven.
0

Theorem 4.11 2" < average L(e(rtopj)) < 1 + 2".

Proof:
The left inequality follows from Corollary A.3. For the right inequality, we know that
there exist functions with cost strictly less than 2" + 1, e.g. a constant function, and
that there are no functions with cost greater than 2" + 1 by Theorem 4.3. Therefore
the average L(e(rf)) is strictly less than 2n + 1.
0

4.3.6 Decomposed Function Cardinality and Program Length

We are concerned with the question: "How well does DFC(f) capture the essential
complexity of a function?" In Appendix A we developed the idea of program length
as a very general characterization of size complexity. In this section we found that
e(rf) is a program with length L(e(rf)) = 1+ 2n+n 2[A]+n[P]+ DFC(f). Therefore,
one step in relating DFC(f) to general complexity is to assess its role in L(e(rf)).

In those cases where L(e(rf _op,) = 1 + 2", DFC(f) = [f] = 2" = L(e(rfo,)) - 1.
That is, in most cases DFC(f) is almost exactly L(e(r-opt)). When L(e(rfo.p.)) <
1 + 2", we do not have as simple a relationship. However, we can prove that DFC(f)
is roughly of the same order of complexity as L(e(r-
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We already know that L(e(rj_,vt)) cannot be small unless DFC(f) is small since
DFC(f) is a part of L(e(r _opt)). Our concern is that DFC(f)might be small while
L(e(rfo.0 t)) is large. That is, we do not want to think that a function is patterned
based on DFC while it really is not patterned when you consider the full cost of
representation as measured by L(e(rf _opt )). In order to demonstrate that this is not
a problem, we will show that L(e(r-opt)) < n3DFC(f). That is, L(e(r _opt)) is never
of a much higher order than DFC(f).'

Theorem 4.12 DFC(f) < L(e(rf _o0 t)) < n3 DFC(f) for all n > 4 and
DFG(f) > 1.

Proof-
The left inequality follows immediately. For the right, let ni be the number of input
variables for pi. Then DFC(f) = Ei-1 2n'. Since ni > 2 we have DFC(f) _ 4[P].

Also, [A] = E[__1 n- + 1 and since n, n we have [A] _ n[P] +1. Now use the second
inequality to eliminate [A] from the expression for L(e(rf _op)) to get:

L(e(rf _opt)) _ 1 + 2n + n2(n[P] + 1) + n[P] + DFC(f)

and then use the first inequality to eliminate [P] to get:

L(e(rfo.0 t)) K_ 1 + 2n + n2 (n1DFC(f) + 1) + n1DFC(f) + DFC(f)
4 4

or equivalently:

L(e(r _ot)) < 1 + 2n + n2 + -DFC(f)(n3 + n + 4)
4

This simplifies to L(e(rj.o.,f)) < n3DFC(f) for n > 4 and DFC(f) > 1.
0

From Theorem 4.12 we know that if DFC(f) is small then program length is
also small. For example, if DFC(f) is polynomial in n then program length is also
polynomial in n. The point is that DFC(f) reflects the essential complexity even
though it does not directly include a measure of the interconnection complexity of

the representation.
There is another indication of the relative importance of interconnection complex-

ity versus DFC. If the interconnections are minimized without regard to DFC then
the result is n + 1 interconnections (n the number of non-vacuous variables). That is,

all functions on a given number of variables have the same minimum interconnection
complexity.

4c.f. [54] Theorem 5.7.5.
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4.4 Decomposed Function Cardinality and Time
Complexity

Another concern about the DFC(f) measure of pattern-ness is that it is based on
combinational machines. What if there are patterns that only become measurable
with respect to sequential machines? If this were the case then DFC(f) would not
measure the patterns of interest in most real computing problems. Of course, this is
not the case. In order to demonstrate that DFC(f) will be small whenever there exists
a good sequential algorithm, we relate DFC(f) to time complexity (the traditiomal
measure of Computational Complexity Theory). There are several differences in the
two perspectives (time complexity versus DFC(f)) that must be considered. One
difference is that DFC(f) considers complexity in terms of a single measure of a
whole finite function while traditional complexity is in terms of a particular input
to an infinite function. A second difference is that Pattern Theory is based on size
complexity while traditional measures are based on time complexity. The objective
of this section is to demonstrate that size and time complexity are simpiy different
perspectives of what might be considered the essential computational complexity of
a function.

Why not just use time complexity in the first place? First and foremost, the time
complexity of all finite functions is 0(1). Therefore, time complexity does not differ-
entiate between patterned and un-patterned finite functions. Another problem with
time complexity is finding out what it is. We know how to find the time complexity
of an algorithm. But we do not know whether or not that is the time complexity of
the function. It may simply be a poor algorithm. This also presupposes that you
have an algorithm for the function, which is begging our question.

Once the relationship between DFC(f) and traditional time complexity is es-
tablished we are able to apply results from the traditional theory of computational
complexity. Also, because small time complexity implies small DFC(f) we know
that patterns as measured by time complexity are a subset of patterns as measured
by DFC(f).

Traditional time complexity t(n) is defined in terms of the run-time of a Turing
Machine [59] which realizes a function of the form f : {0, 1}* -4 {0, 1}, when the
input is a string of length n. On the other hand, DFC(f) is defined as a measure
of a realization of a function of the form g : {0, 1}" --+ {0, 1}. In order to be able to
compare these two measures we use the following device. Let f : {0, 1}* --, {0, 1} be
a function and f,: {0, 1}n 

_ {0, 1} for n = 0,1,2,... be a sequence of functions such
that f(x) = f(x) for all x in {0, 1}" and for all n in N. The DFC complexity of a
representation of f,, is denoted s(n).

We developed this device and the following theorem not knowing that a similar
result had been previously demonstrated (see [19, 55]). However, because this is
fundamentally important to Pattern Theory, we want to present a proof. Rather
than repeating the original proof, we present our proof and suggest that the reader
see [64, pp.271-276] for a more elegant demonstration of this result.
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Theorem 4.13 If f : {,1}* - {0, 1} is a function with an algorithm of worst-case
time complexity t(n) then for every n E N, there exists a combinational realization of
f, such that s(n) is in O(t(n) log t(n)).

Proof:
Let M = {, r, Q, q0, 6, F} be the Turing Machine which realizes f with worst case
time complexity t(n), where r is the tape alphabet, E is a subset of r called the
input alphabet, Q is a set of machine states, q0 is the start state, F is a set of final
states, and 6 : r x Q --+ r x Q x {-1, +1} is the transition function (reference [59,
pp.211-215]). The L (for left) and R (for right) of Sudkamp's definition have been
replaced with -1 and +1; the reason for this will be pointed out later. We break 6
into 6' : r x Q -- , r6" : r x Q -- Q, and 6"': r x Q -- {-1,+1} such that 6(g,q)
equals (6'(g, q), 6"(g, q), 6"(g, q)).

Define the interval Z = {0,1,2, ... , t(n)} and the function p : Z -- Z such that
p(i) is the position of the tape after i transitions. Define q : Z - Q such that q(i) is
the state of the machine after i transitions. Define g : Z x Z r P such that g(ij)
is the symbol in the jth position of the tape after i transitions. We use p, q, g and h
to establish a combinational realization of fn. Define h : on(n) x z x Q -- (n) such
that g(i,j) = h(g(i - 1,j),p(i - 1),q(i - 1)) for all i and j.

From the starting conditions of the Turing Machine p(O) = 1, q(O) = qo, and
g(Oj) = x(j) (i.e. the input) for j = 1,2,... , n. From the final conditions, p(t(n)) = 0
and q(t(n)) is the state defined to correspond to f(z) = 0 and f(z) = 1 as appropriate.

By the definition of a Turing Machine we can write difference equations for p, q,
and g:

p(i) = p(i - 1) + 6"(g(i - 1,p(i - 1)),q(i - 1)) for i - 1,2,...,t(n). Using

{-1, +1} as the range of 6"', rather than {L, R}, allows this simple addition. The
increment in cost associated with each i is the cost of addition plus the cost of 6"',
i.e. a(+) + s(6"..), since the cost of all the other functions are accounted for elsewhere.
The cost of "" is O(m) (reference [7] where, since the largest number to be added
is t(n),m = log t(n). That is, s(+) = klogt(n). For 6' : r x Q - {-1,+1},
we have s(6"') = [rl[Qlog[{-1,+1}] = [r][Q] = k, k some constant. Therefore,
s(p) = k1 log(t(n)) + k2.

q(i) = 6"(g(i - 1,p(i - 1)),q(i- 1)), for i = 1,2,... ,t(n). The increment in cost
associated with each i is s(6"), since the cost of all the other functions are accounted
for elsewhere. For 6" : F x Q --, Q, we have s(6") = [r][Q]log(Q] = k, k some
constant. Therefore, s(q) = k.

g(i,j) is unchanged for all j except j = p(i- 1) and g(i,p(i- 1)) = 6'(g(i- 1,p(i-
1)), q(i - 1)). That is, g(i,j) = h(g(i - 1,j),p(i - 1), q(i - 1)) = .NOT.(.EQ.(j,p(i -
1))) x g(i - 1,j) + .EQ.(j,p(i - 1)) x S'(g(i - 1,j),q(i - 1)), where the functions
.NOT. and .EQ. are the obviouq logical operators with values 0 or 1 and + and x
are arithmetic operators. The increment in cost associated with h is s(.NOT.) +
s(+) + s(6') + 2s(.EQ.) + 2s(x). The multiplications always involve a zero or a
one, therefore we assume that s(x) is constant. The addition always involves a zero,
therefore we assume s(+) is constant. The cost of the logical operators is constant.
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Figure 4.7: Similar Decompositions, One Recursive, One Not

For 6':• r x Q r~1, we have s(6') = [r][Q]log(r] which is again some constant.
Thus, s(h) = k, for some constant k. There must be an h for each tape position. A

maximum of t(n) tape positions will be used, therefore, we know there can be less
than or equal to t(n) h's. The total cost then for updating g(i,j) for all j at each i
is kt(n).

Each transition can be combinationally realized with a cost of s(p) + i(q) + s(h) =kit(n) + k2 + k3 log(t(n)). The entire process can be combinationally realized by
modeling t(n) transitions. Inputs which require less than t(n) transition can be dealt

with by modifying 6 to include a no.op type transition. Therefore, the total com-
binational complexity is t(n){ki log(t(n)) + k2 + k3 log(t(n))}. That is, s(n) is in
O(t(n) log(t(n))).

An immediate consequence of this Theorem is that if it is not possible to find a
good (relative to DFC) combinational realization of a function then it is also not
possible to find a good (relative to time complexity) algorithm for the function. In
other words, if a method for finding optimal combinational realizations fails to find a
nice representation of a function then there does not exist a nice algorithm to compute
that function either.

The results in computability theory demonstrate that recursion is the key property
that a function must have to be computable. It is tempting then to extend this and
say that recursion is a key property that a function must have to be patterned (i.e. not
complex). However, DFC(f) does not favor functions with recursive representations.
For example, Figure 4.7 shows two functions of equal DFC. The function on the
left has a recursive-like representation while the function on the right does not. We
feel that the problem lies in trying to extend computability results to complexity
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rather than in DFC(f). Recursion is important in getting finite representations of
infinite functions (see Appendix A); however, it is not crucial to the complexity of
finite functions. There is a real cost savings in recursively reusing components of a
composition; however, we believe that this is a secondary effect and it is not indicative
of the existence or absence of patterns. It would be easy to redefine DFC to reflect
the economy of reusing functions in a composition; for example, we could include only
the unique pi's in adding up DFC. However, finding this newly defined DFC would
be much more difficult. We feel that this improvement in generality is not worth the
loss in tractability.

In summary, it has been proven that if a function has low time complexity then
it also has low DFC. This means that if a function has, a nice representation using
sequential constructs (do-while, recursion, etc.) then it also has a nice combinational
representation. The main point is that there is no loss in generality due to the PT 1
restriction to combinational machines.

4.5 Decomposed Function Cardinality and Cir-
cuit Complexity

There has been a great deal of theoretical work on measuring and minimizing the
complexity of electronic circuits. Using Savage'76 [541 as the principal reference, we
review the several measures of complexity. "Combinational" complexity is the num-
ber of circuit elements required to realize a function. "Formula size" is the number
of operators in an algebraic expression of the function. "Delay complexity" is the
length of the longest path from input to output in a realization of a function. Combi-
national complexity is very similar to Decomposed Function Cardinality (DFC). We
will discuss their relationship first. The relationship of combinational complexity to
formula size and depth complexity is then summarized from Savage'76.

Combinational complexity in Savage'76 is defined relative to a set of basis func-
tions (Q). A given Boolean function f is then realized by combinations of the elements
of Q. The combinational complexity Cn(f) of a Boolean function f relative to the
basis 11 is the minimum number of elements from 0 required to realize f.

Cn(f) is sometimes generalized by allowing the various elements of f1 to have
different costs [52]. For example, we could define a weighting function (w : 1 -4 R,
7?. the real numbers) on Q. Then the generalized cost of a function (Cn, (f)) is the
sum of the weights of the elements in the realization that minimizes that sum. CO(f)
is the special case of Co, (f) where w is the constant 1 function.

DFC is also a special case of this generalized combinational complexity. DFC is
exactly Cnj,,(f) when Q is the set of all Boolean functions and w(p) = [p] for all p E ft.

Note that for the most common set of basis functions, Q = {AND, OR, NOT},
Cp(f) and DFC are also very similar.

Theorem 4.14 For a Boolean function f and basis set Q = {AND, OR, NOT},
DFC(f) 4Cg(f) < 4nDFC(f).
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Proof:
DFC < 4Cn since each element of fZ has cardinality of 4 or less. Suppose the decom-

position of f with minimum DFC is made up of PIi P2, '" ,pp and the number of vari-

ables going into pi is ni. In this case, DFC(f) = i 2. Now, Cr(f) _< E!'I Ci(p,).
Since each pi has a sum-of-products representation, we have Cn(pj) _ ni2i[54, p.19].
Therefore, Cn(f) E I h2" n = 2< ' = nDFC(f).

0

In summary, CQ is in some ways more general than DFC; but, it is more general
in a way that denies any absolute meaning to complexity. That is, for all functions
f there exist an 12 (n.nely any Q with f as an element) such that Cn(f) = 1. This
relativity of complexity to a chosen basis is believed by some to be unavoidable.
'The main idea of Pattern Theory is that there is some general absolute measure of
complexity in the sense of patterns.

C{AND,ORNOT} is quantitatively similar to DFC but it leads you to artificially
decompose (i.e. represent in some normal form) un-patterned functions. In Pattern
Theory, all functions have themselves as a normal form representation. Also, on
smaller functions it gives an artificial importance to members of n.

Savage'76 has little to say about the relationship of combinational complexity to
formula size and depth complexity. Depth complexity is proportional to the logarithm
of Co. Also, Co < formula size. Other than that, not much is known about the
relationship between combinational complexity, depth complexity and formula size.

4.6 Summary

This chapter defines our chosen figure-of-merit for algorithm design: Decomposed
Function Cardinality (DFC). We then support the idea that DFC reflects the essential
pattern-ness of a function. Chapter 6 has the results of many experiments that
support this idea. In this chapter we supported this idea by showing that if a function
has an interesting pattern by most other measures then it also has a pattern according
to DFC. We considered three other measures of computational complexity: program
length, time complexity and circuit complexity.

Appendix A interprets a result from Communications Theory in terms of programs
and the length of a program (essentially the number of characters in a listing of a
program). It turns out that a similar interpretation had previously been made [12].
We then related DFC and program length. This relation supports the use of DFC
rather than program length as our measure of patterns because DFC is more tractable
and yet reflects the essential complexity that program length would measure.

We developed a formal proof of the relationship between DFC and time complexity.
It turns out that this relationship had also been previously demonstrated [54]. The
relationship between DFC and time complexity demonstrates that DFC is a more
general measure of complexity (that is, anything patterned relative to time complexity
will also be patterned relative to DFC). DFC also has the advantage over time
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complexity in that it is meaningful for finite functions and allows for a method of
design (Chapter 5).

The relationship between DFC and circuit complexity is quite simple. DFC is a
special case of the more general definition of circuit complexity. We believe it is the
special case that reflects the essential pattern-ness of a function.

We mentioned earlier that it would be desirable to include the cost of the intercon-
nections in a general measure of patterns, as in the program length of an encoding of a
decomposition. It would also be desirable for a general measure to reflect the savings
of reusing components, as in a recursive representation. However, we believe that
DFC allows you to determine the basic degree of pattern-ness without the complexity
of dealing with these secondary effects.
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Chapter 5

Function Decomposition

5.1 Introduction

By a "function" we mean the traditional mathematical function; that is, a function
is an association between inputs and outputs such that for every input X there is
exactly one output f(x). Functions in general may have several inputs, e.g. f(z, y, z).
The decomposition of a function is an expression of that function in terms of a com-
position of other (usually smaller) functions. For example, if f(XI, X2,... , XS) =

F[A[O(a;1,Z 2), O(X3, X4), (X5, X6)], C(X7, Xs)J then the right-hand side of the equation
is a decomposition of the function f. The process of finding a decomposition of a
function is called function decomposition.

Function decomposition is of practical importance in the design of computational
systems. The realization of a large function in terms of smaller functions has a number
of practical benefits, especially simplifying the design process and lowering the cost of
the overall realization. The development of function decomposition theory has been
motivated primarily by Switching (or Logic) Circuit Design, where the lowest level
sub-functions are realized by some standard circuit component (e.g. an AND gate).
Pattern Theory holds that function decomposition is of fundamental importance in
the development of all computing systems, including algorithm design and machine
learning. Aside from the practical motivation, function decomposition is a well defined
and very interesting mathematical problem.

This chapter has three main sections. Section 5.2 introduces and formally proves
the test for decomposability. The next section describes the Ada trogram used in
this project to decompose functions. The final section reports on performance tests
of various versions of the Ada program.
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5.2 The Basic Decomposition Condition

5.2.1 Introduction

A number of algorithms have been developed to find the decompositions of a given
function. All these algorithms are iterative. That is, they decompose the function
in a series of similar steps. The first step decomposes the function into a small
number of sub-functions. The second step decomposes each of these sub-functions
into a small number of sub-subfunctions. This process is repeated until the remaining
functions are no longer decomposable. The function decomposition algorithms use
a fairly standard test for whether or not a function (or sub-function) decomposes.
This test is based on what we call the basic decomposition condition. On the other
hand, the function decomposition algorithms use different methods for searching and
selecting among possible decompositions. An optimal method of search and selection
(other than exhaustive search) has not been defined. The basic decomposition is
the common non-heuristic portion of these algorithms. The basic decomposition
condition test is an exponentially (relative to the number of variables in the function)
difficult problem. The number of variable partitions is another exponential factor,
however, this factor can perhaps be mitigated with reasonable search heuristics. The
nature of the decomposition test is such that there is no way to limit its exponential
complexity. Therefore, the decomposition test is also important as a limiting factor
in the practicality of any algorithm which exactly decomposes total functions.

The purpose of this section is to develop a concise, yet rigorous statement of a
general basic decomposition condition. Many of the previously published statements
of the basic decomposition condition have shortcomings in rigor, generality, or in
requiring an extensive background in non-essential materials. For example, the bible
of function decomposition is the text by H. A. Curtis [14]. However, its not until
page 471 that the most general form of the decomposition condition is given and an
understanding of much of the previous 470 pages is required to understand page 471.
Reference [14 also does not prove the most general statement of the decomposition
condition, rather it is an extension of the proofs of less general forms, The most
general form given in [141 is also not applicable to multi-valued functions. Finally,
[14] has been out of print for some time and it is very difficult to find.

5.2.2 An Intuitive Introduction to the Decomposition Con-
dition

Consider a function of the form f : X, x X 2 x ... x X,, - Y. This function is
also denoted f(X1,X 2 ,... , ,,), where x, represents some unspecified value of Xi.
1 2,. . . , ,} is called the set of variables of f. We are interested in a partition of
the variables of f into two sets. A partition is a collection of subsets whose union is
the whole set and whose intersections are all empty. We denote the two sets of vari-
ables v, and v2. Therefore, Vl Uv 2 = {X1 , 2,... , ,,} and vl nv 2 = 0. For example, if
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X1 I2 X3 J X7 f X2,1X3,iZ.1)

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0

0 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
S1 00 1

1 1 0 1 0
1110 1

I1 111 1

Table 5.1: A Table Representation of a Function

n = 8, then one partition is (v1 = {XlX 3 , 4 ,XX 7},V 2 = {X2 ,2zs, xs}) and a second
partition is (vI = {X2 ,X 3 ,X, X 6,X 7 },V 2 = {x 1 ,) 5 ,xS}).

A finite function can be represented by a "truth-table" where all possible values
for the input are listed with their corresponding image under the function. Table 5.1
is a table defining a function.

We might call Table 5.1 a one-dimensional table since it lists the values in a vertical
line. We can also represent a function with a two-dimensional table by letting the
values of the variables in v, mark off one direction while the values of the variables in
v2 mark off the orthogonal direction. The value of the function, for the given values
of v, and v 2, then go into the "matrix" (the 2-D table) at the coordinates (vI, v2).
For example, if v, = {X1 ,X 2} and v2 = {X3, X} then the function of Table 5.1 could
also be represented as the 2-D table of Table 5.2.

In Table 5.2, x, and X2 specify a column of the 2-D table while X3 and x., specify
a row of the table. Of course, xj, X2, x3 , and X4 specify a particular point in the
table corresponding to the value of the function at x1, X2, X3 , and X4. A 2-D table
of a function is called a partition matrix. A different partition of the variables would
give a different arrangement of f's values. For example, with respect to the partition
V1 = {X,X 4} and v2 = {X2,X 3} the 2-D table becomes as in Table 5.3.

There could also be partitions with unequal numbers of variables as in Table 5.4.
If one of the sets of variables is empty we have the familiar 1-D table as in Table 5.1.

Now examine Table 5.5. Notice that all the columns are the same. It does not
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XlM2

f 00 01 10 11
00 0 1 1 1

X3X4 01 1 0 0 0

10 1 1 0 1
11 0 1 0 1

Table 5.2: A 2-D Table of a Function With Respect to a Partition of its Variables

X1X4

f 00 01 10 11
00 0 1 1 0

X2X3 01 1 0 0 0
10 1 0 1 0
11 1 1 1 1

Table 5.3: A Second 2-D Table of a Function With Respect to a Partition of its
Variables

f 0 1
000 0 1

X2X3X 4  001 1 0

010 1 0
011 0 0
100 1 1
101 0 0
110 1 1

Table 5.4: A Table Representation of a Function
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XlX2

f 00 01 10 11
00 1 1 1 1

i02 4 01 0 0 0 0

10 0 0 0 0
11 1 1 1 1

Table 5.5: A 2-D Table of a Function With Respect to a Partition of its Variables

matter which column is specified by ZaX2. In other words, the value of x, and X2 do
not impact the value of f. The value of f depends only on the value of X3 and X4 (i.e.
which row of the 2-D table). Therefore, there exists a function F : {0, 1}2 + {0,1}
such that F(X3 , Z4 ) = f(X1,Z 2 , Z3, X4) for all x, in X1, all X2 in X2 , all X3 in X3 , and
all X4 in X4. In a very reasonable sense then, F is a complete representation of f.

Another way of saying that all the columns of f's partition matrix are the same
is to say that there is only one distinct column in f's partition matrix. The number
of distinct columns is an important part of the basic decomposition condition and is
called the column multiplicity and denoted v.

From the above example, we see that if v = 1 then the variables associated with
the columns of the partition matrix can be dropped. That is, if v = 1 then there
exists a function (F) on the row variables only, which is equal to f. We can begin to
see the relationship between v and the decomposability of a function.

Now consider the function g defined in Table 5.6. With respect to the partition
of variables v, = {fX,X 2 } and v2 = {z3, z,}, g has the partition matrix of Table 5.7.

Notice that there are two distinct columns in g's partition matrix. That is, V = 2.
In this case it is not possible to drop the v, (i.e. x, and X2) variables. Without the v,
variables there is an ambiguity in the value of the function when (XI, Xj) = (0,1) or
(1,1). Even though we cannot drop the v, variables, the vi variables are really only
needed to distinguish between the two distinct columns. Therefore, we can define a
function 0 : X, x X 2 -, Z which selects the appropriate column when given z, and
z 2. For example, z = 0 indicates the first column and z = 1 indicates the second
column. There also exists a function G which 4akes z (to select between the two
distinct columns), x3 and X4 as input, and repre,,.nts g, that is, g(Xl,Z2,X 3 ,X.1) =
,G(O(xlX2),X3, X4). See Table 5.8 and Table 5.9 wiere g is defined using G and 0.

From the preceding example, we see that if v = 2 for a function g with respect
to the partition (vI,v 2) then there exist functions G and q such that g(vj,v 2) =

G(cb(v1),V2).
Summarizing the prior two examples, if v = 1, then the v, variables can be dropped

(or reduced to a "unary" variable) and if v = 2 then the v, variables can be reduced
to a binary variable. A trend in the relationship between v and decomposability is
beginning to develop.
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X1 X2 X3 t4 _(____,z3,_4)

0 0 0 0 1
0 0 1 0
01 0 1 0 0

1,10 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0
1 0 0 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0

1 0 0
1 1 11 1

Table 5.6: A Table Representation of Function g

X1lX2

g 00 01 10 11
00 1 1 1 1

X3X4 01 0 1 1 0
10 0 0 0 0
11 1 0 0 1

Table 5.7: A Partition Matrix (2-D Table) of g

XIX2

g 00 01 10 11
O(XI, X2 ) 0 1 1 0

00 1 1 1 1
X3X4 01 0 1 1 0

10 0 0 0 0
11 1 0 0 1

Table 5.8: A Partition Matrix of g With q Defined
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0
G 0 1

00 1 1

X3X4  01 0 1
10 0 0

11 1 0

Table 5.9: g Defined by G and 4

Consider one final example, which we only outline. Suppose h : X, x X 2 x X 3 x
X4 --+ Y'has v = 3 for the partition of variables vi = {a 1,X 2} and v2 = IX3,X4}.

Then, as in the second example, we can define 77 : X1 x X 2 -* Z and H : Z x X 3 x X 4 -4

Y such that h(xi, X2,z 3,aX4) = H(n(xl,X 2), X3,X 4), except now we must have three
elements in Z (e.g. Z = {0, 1, 2}) to distinguish the three distinct columns. Clearly,
for any function f : X 1 x X 2 x ... x X, -- Y, as long as Z has as many as v
elements there will always exist functions , : --* Z and F : Z x V2 -4 Y such
that f(XliX2,...,iX) = F((v 1),v2). For example, if v = 4 then Z = {0,1,2,3} is
sufficient for a decomposition of the form of the prior examples. This is, essentially,
the decomposition condition. Once v is determined for a partition of a function's
variables, we know how big Z must be for the function to decompose with respect to
that partition. In particular, for any function f : X1 x X 2 x ... x X Y, if v < [Z]
with respect to variable partition v1,V2, then there exist functions 4, : V1 -+ Z and
F: Z x V2 --* Y such that f(XI,2 ...Xn)= F(0(v1),v 2).

In the above examples we assumed that Z is of the form {1, 2,3,...,[Z]}. We
could have used a set of vectors for Z, e.g. Z = {0, 1}2 = {(0, 0), (0,1), (1, 0), (1, 1)}.
When Z is a vector set, we can think of 4 as a single vector valued function, or as
a vector of scalar valued functions. For example, if V = {0, 1 1,1, V2 is {0, 1}, and
v = 4, then we could define any of the following decompositions: f(XX 2,X 3,X 4) =

F(O(ai, X2 ,X 3 ), .1 ) = F(0'(xi, 2 , X3 ), .) = F"(0I"(X1 ,X 2 ,X 3)0..(X1 ,X 2 ,X 3 ),X 4 ) where
4,: V1 - {0,1,2,3}, 0': I __ {0,1}2, 0,": V -+ {0,1}, and 4': V -- {0,1}. Ta-
ble 5.10 shows examples for the various O's. Therefore, a basic decomposition does
not necessarily have exactly two component functions. In particular, there can be
several O's.

When Z is a vector set, its cardinality is the product of the cardinalities of the
sets in the product of sets forming Z. That is, if Z = X, x X 2 x X 3 x ... x Xk
then [Z] = [X1][X 2][X 3 ] ... [XkJ. For cost considerations (discussed later) we are
interested in keeping [Z] as small as possible. We also want to maximize k since this
will provide more opportunities for decomposing F. The ideal situation is for vi to
be some power of 2; in this case Z = {0, 1}k , where k = log(v), meets both of our
objectives. However, if we insist on using a product of some set X then when v is
just slightly larger than a power of [X], [Z] is almost twice as large as really required.
Theorem 5.1 provides one possible point in the [Z] and k trade-off.
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X1 X2 3 X3 € ' 4" ,,
0 0 0 0 (0,0) 0 0
0 0 1 2 (1,0) 1 0
0 1 0 1 (0,1) 0 1
0 i 1 1 (0,1) 0 1
1 0 0 0 (0,0) 0 0
1 0 1 3 (1,1) 1 1
1 1 0 2 (1,0) 1 0
1 1 1 0 (0,0) 0 0

Table 5.10: Various Forms of Z

V,

F
V2  f(vl,v2)

Figure 5.1: Form of a Decomposition

Theorem 51 For minimum [Z], (i.e. [Z] = v), the number of variables in Z =

X, x X 2 x X 3 x ... x Xk is maximized if [X1],[X 21,[X 31,...,[Xk are the prime
factors of v.

There is one final twist to the decomposition problem that we want to discuss at
an intuitive level. In the decomposition condition just discussed, we were considering
decompositions of the form of Figure 5.1.

A generalization of this form is to allow some of the variables which are inputs to
4' to also be inputs to F; that is, to allow decompositions of the form of Figure 5.2.

In this more general case the partition matrix is three-dimensional. V defines
columns as before. V3 defines rows as before. V2 defines the third dimension. That
is, for every value of V2, there is a traditional two-dimensional partition matrix. The
information of V2 is available to F; differences in the values of the function across

V,

V2  F(V ,V2,V3)

V3

Figure 5.2: Form of a More General Decomposition
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X1X 2

X4 X5 00 01 10 11

c3 =0 0 1 0 0 1 1

1 0 0 0 1 1

1 1 0 0 1 1
0 0 0 1 0 1

X3=1 0 1 0 1 0 1
1 0 0 1 0 1
S1 0 1 01

Table 5.11: Partition Matrices

this third dimension do not have to be reflected in 0, that is, they can be accounted
for in F. Therefore, in defining qS, it is only necessary that each individual layer (for
each value of V2) be decomposable. Let v,, represent the column multiplicity of the
2-D matrix for v2. The decomposition condition therefore is v,2 < [Z] for all v2 in
V2. If we redefine v to be the maximum of all v,2 for any v2 in V2 then the condition
can be given as v < [Z]. The V2 variables are "shared" between 4 and F; thus we
sometimes call this generalization a "shared variable" decomposition.

As an example of shared variable decomposition consider the function

f: {0,1}Y -+ {0,1}

defined in the partition matrices of Table 5.11. The partition corresponding to Ta-
ble 5.11 is V = {1 l,X 2 }, V 2 = {X3 }, and V3 = IX4,XS}.

From the partition ma,6rices we see that v,3=0 = 2 and V 3 = 2, thus v = 2. A
decomposition exists with respect to this partition when Z = {0, 1}, e.g. Figure 5.3.

5.2.3 The Formal Basic Decomposition Condition
Introduction

When discussing decompositions of a function it is natural to classify different kinds
of decompositions according to their properties. An extensive taxonomy of decom-
positions is developed in [14] (e.g. there are simple, multiple, iterative, disjunctive,
and proper types of decompositions as well as their complements and many of their
combinations). Without detractirg in any way from the importance of these classes,
we propose a new class called the basic decompositions. This class is defined to
correspond exactly to the class of decompositions which can be tested for with the
decomposition condition to be developed in this report.

We now formally define a basic decomposition. Let n be a finite integer and
let X1 , X 2,...,X,,, and Y be finite sets, each of cardinality two or more. We are
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M12 0x3=O 0.3=l XlX2X3 9
0 00 0 000 0
01 0 1 001 0
10 1 0 010 0
11 1 1 011 1

100 1
101 0
110 1
111 1

Figure 5.3: Example Decomposition

interested in any partial function f of the form f X1 x X2 x ... x X n - Y. Let
XI Z2),... t, represent variables of the sets X 1,X 2,... ,X,, respectively. That is, zi is
some unspecified element of Xi. Let V1, V2 and V3 be products of finite sets, say V1 =
VII X V 2 X ... X V,, V2 = V21 X V22 x ... x V2,,,, and V3 = V31 X V32 X ... X V,,,, where
there exists a bijection b: {1,2,..., n} -* {11, 12,..., ln', 21, 22,..., 2n",3, 32,..., 3n"}
such that Xi = Vb() for i = 1,2,...,n. V1,v 2,V3 are variables associated with V1, V2,
and V3, respectively. The variable vi represents the variables Vil, 2,... ,Vin,'. V1, V2

and V3 are a partition of the domain of f. By a "partition" we mean that except for
possibly the order of the sets in the products, X, x X 2 x ... x X,, = V1 x V2 x V3;

Consider f : V x V2 x VI -* Y such that f(XI, 2,...,X,) = f'(vI,v 2,)V3 ) when
vi's and the xj's are related by b. Rather than distinguishing f and f, we simply
use f for either function; which function is made clear by the context. That is, we
say f(X ,Z2, ,x, ) and f(V1,v 2,v3), when vI,v 2,v 3 is a partitioning ('f the variables
X, 2,... t , ,. We similarly use f (VIi, 1 2, ... ,V1 n,,'V 21 ,) 22 ,... ,V2,, , V3 1 V 3 2, t ... , V3n)

with the obvious meaning.
A basic decomposition of a function f : X1 x X 2 x ... x X, --- Y with respect to

the partition V, V2 and V3 is two functions 9 : V x V2 -4 Z and F : Z x V2 x V3 -4 Y
such that f(VI,V 2 ,V3) = F(O(vi,v 2),v 2,v 3 ) for all vI E VI,V 2 E V2 , and v3 E V3 when
f(vI,v 2,v 3 ) is defined.

When f is not a total function, we only require that f(vI, v 2, v,) = F(9(vi, v2), v 2, v)
when f is defined. That is, F(O(vl, V2 ), V2 , V3 ) may be defined arbitrarily or undefined
whenever f(vI, v 2, v3) is undefined. Our justification for this comes from two sources.
First, when partial functions arise in practice, the elements with undefined images ei-
ther cannot occur or when they do occur we do not care what the function outputs for
that input. Therefore, allowing a decomposition to produce a value when the original
function was undefined is often acceptable in practi-e. Secondly, in those cases where
we do want the decomposition to be undefined whentver the original function was
undefined, we can modify the semantics of the problem slightly and make it a special
case of what we allow. To modify the semantics of the problem, we define a total func-
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tion f: X, x X 2 x ... x X, -- YU{u} such that f'(OhO2, ... ,0n) f(0t,2,...,?O)
when f is defined and f'(X1 ,X 2,. . . ,On) = u when f is undefined. The decomposi-
tion properties of f with respect to our criteria are the same as the decomposition
properties of f when undefined values must be preserved.

Some of the more familiar types of decompositions are special cases of basic de-
compositions. For example, when Xi = {0,1} for i = 1,2,...,n and Y = { 0 ,1}m,
we have the classical Boolean functions. When V2 is empty and Z = {O, 1} we have
a traditional "nondisjunctive" decomposition. If Z = {0, 1}k, for some integer k, we
might think of 0 as a vector function (or k distinct functions on the same domain). In
this case we have an "improper" decomposition. A basic decomposition can be any
of the Curtis types of decomposition. Multiple-valued logic functions are obviously
covered by this form as well.

The Basic Decomposition Condition Theorem

Before stating the basic decomposition condition, we need to develop a formal defi-
nition of the column multiplicity (v) of a partition matrix given a function f and
a partition of its variables V1, V2 , V3. We assume that V and V3 are both non-
empty. When either is empty, F or q0 is exactly f; therefore, no real "decomposi-
tion" is involved. Since V3 is a finite set of [V3] elements, we can define a bijection
b: {1,2,... I[V]} -+ V1. A "column" (C,,,,) for some fixed v, and v2 is defined as the
sequence: C,,V. = (f(v,v 2,b(l)), f(vi,v2,b(2)),f(vI,v 2,b(3)),. . . ,f(v1,v 2,b([V]))).
Therefore, C,,, 2 is a vector from Y1 31. Columns form a "set of columns" (SV2) for
a fixed v2 : Sv, = {C, 2 [vl E Vl}. When f is total, v is the maximum element of
{ [SvJV2 E V21; however, when f is not total, we need an extra step.

Call two columns compatible if the only coordinates in which they differ are those
where either is undefined. Consider §V 2 = {C, 1,2Vf(v,v 2, v3) is defined for each
v1,v3}. If S 2 is empty, we can go to later steps. If not, define relation R 2 on §V

using prefix notation by R&2 (C V2,C1V,1V 2 ) if f(vI,v 2,v3 ) = f(vI,v 2 ,v 3) for all v3 E V3.
This is an equivalence relation on Se,. Enumerate the resulting equivalence classes
El, E2, .... Ei2 calling representatives el, e 2 , . . ., ev2. Also enumerate the elements
of the set S 2 \S 2, C1, C2 ,..., Ci1,. Choose the first class such that C1 is compatible
with the representative of that class and adjoin C1 to that class. If no such class
is found, C1 will belong to its own class Eiv2+1. If C creates a new class, it is the
representative - called e!+ 1 . Otherwise, define the new representative of the class
that C, is in, to be e' where (e'),,, is the value of (CI)m or (ek)m, if either or both
are defined (if both, they must be equal), and (e'),,, is undefined if both (CI),,, and
(ek)m are undefined. Here, m = 1 to [V3] and m stands for the "coordinate" of the
column vectors. Representatives of other classes remain the same but are denoted
individually as el. Continue in this manner with the other elements of Sv, \Sv2. That
is, if a column C is not compatible with any of the existing representatives, it will
create a new class whose number is one more than the number of the last class:
1,2 + 1. It will be the representative, denoted e1,2 +1. If a column Ca is compatible
with an existing representative, we choose the first occurrence of this, adjoin Ca to
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that class and proceed as with C, except in the above steps (when we dealt with
CI) replace ek with ea1), 4e with ea, and- e, with e'. Finally, given v2, we have the
set of classes E,2 = {Ej,2 11 < i,,: v,2 } which partitions the set of columns. The
classes' representatives are (ejV2 ), (e j 2 )2,... , (ej

-2 )1 2 . Call the equivalence relation
determined by this partition of S,2 , R12 . Now we define v12 = [E12]. When V2 is empty,
there is only one E,2 since v2 cannot occur in the expression. Finally, we define v as
the maximum over all V2 in V2 of v,2. This definition relies only on elementary set
theory for background.

Theorem 5.2 (The Basic Decomposition Condition) 1 For finite integern, and
finite sets X1 x X 2 x ... x X,, Y, let f be a partial function f : X, x X 2 x ... x X,, --

Y. Let V1, V2, and V3 be a partition of the domain of f. There exist functions
4 : V1 x V2 -+ Z and F : Z x V2 x V3 -* Y such that, whenever f(vi,v 2,v 3 ) is defined,
f(vI,v 2 1,v3) = F(S(v1,v2),v 2,v3 ) if and only if v < [Z].

Proof:
First we prove that v < [Z implies that there exist functions q0 : V1 x V2 --+ Z and
F : Z x V2 x V3 -* Y such that, whenever f(vI,v 2 ,v3 ) is defined, f(vI,v 2 ,v 3) =

Step 1. Define 4,: V x V2 --* Z by O(v,v 2) = i if C 1 12 E Ei,2
Step 2. Define F : Z x V2 x V3 -- Y as follows:

i. if z = i for some i, then F(i,v2,v3) = (e i2)b(v,) where b is the bijection from V3

into {1,2,...,[V3]},
ii. otherwise,F(z, v2, v3i) is undefined. Once in place, defined coordinates of the rep-

resentatives of the equivalence classes do not change, so when defined f(vi, V2,v3) -

jv2
(,~~. j2 ))b(V3)= = ((jV),2V

Now we prove that the existence of functions 4 : V1 x V 2 -, Z and F : Z x V2  V3
Y such that, whenever f(vI, v 2, v 3) is defined, f(v1, v 2, v 3) = F((vl, v2 ), v 2, v 3) implies
that v < [Z]. First observe that v < [Z] is logically equivalent to v'2 < [Z] for all
V2E V. Assume to the contrary that there exists v2 E V2 such that vV2 > [Z].

1) We can assume that equivalent columns correspond to ordered pairs which
have the same inverse image under 4,. When C,,v, and C1, I V2 are R V2 -related, then
when defined f(v 1 ,v 2,v 3) = f(vI,,v 2 ,v3 ) for each v3. Thus, F(0(vj,v2),V2 ,v3 ) =
F(0(v,,v2),v 2,v 3 ). No harm is done to the relationship between 4 and F and the
range of 4 is no larger than before. Hence, we assume that the inverse image of an
element of Z contains ordered pairs which correspond to an equivalence class (under
R,,,) of columns.

2) If V,2 > [Z], then there must be two non-equivalent columns whose corre-
sponding ordered pairs have the same image under 4,. These columns cannot come
from S U2 since R,2 is the equality relation there because if two columns from S 2 are
not equivalent, there must exist a v3 such that f(vI,v 2 ,v3 ) = f(vI,v 2,v3). Hence,

'Mike Breen contributed substantially to the development of this proof. See [4) for the original
development of a decomposition condition.
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f(V1,V2,V3)= FQP(viV2),V2,V3) =F(k(ViV2),V2 ,V3) = f(cnIV 2,V3) f(VgV 2,V3),
a contradiction.

3) For SV2\S 2, use the ordering developed in defining R12. Choose the first ele-
ment of S, 2 \S 2, Cj, such that the number of equivalence classes in S,,2 U {Ct,... , Cj}
is larger than [q(Sv2 U {C1,..., Cj})]. If no such element exists, v,2 < [Z]. Because of
how Cj was chosen, Cj must create its own class. That is, Cj is not compatible with
any representative of the equivalence classes at that time. We can write C 1,2 for Cj
and see that there exists C, e S 2 U {C 1 ,...,Cj} such that q(vj,v2) = (vII,v 2).
Call the representative of the class of C,, 2, ea. We know that CV 2 is not compatible
with ea.Therefore, there is a C,11 2 currently in the class with C,,,, 2 such that for
some v3 ,f(v,,vuV3 ) and f(v 1 ,v 2,v 3) are defined and unequal. This last statement
follows from the fact that a column is compatible with a representative of a class if and
only if it is compatible with each element in the class. Now we have Rv2 (C, 111V2, CVt,,2)
which implies that q(V 1,,v 2) = q(vI,v 2 ) = q(vj,v2 ) and that F(#(vI-i,V 2 ),v 2 ,v 3 ) =
F((vi,v2 ),v 2,v 3) for each v3. Yet for some v3 ,f(vi,,v 2,v3 ) = f(vi,v 2,v3 ) and both
are defined. As before, this contradicts the assumption about 0 and F. Hence, no
such non-equivalent columns exist.
0

5.2.4 Non-Trivial Basic Decompositions

For a mapping of a given form f X1 x X2  ... x X, --+ Y and for a given partition V,
if [Z] is sufficiently large then every possible function of that form will decompose with
respect to that partition. We call decompositions of this type trivial. Decompositions
which are not trivial are called non-trivial. Since non-trivial decompositions do not
always exist, they are in some sense special. This section develops the condition for
the existence of non-trivial basic decompositions.

First we establish the least upper bound on v. Define Vmax to be the smaller of
[V] or [y][l 1.

Theorem 5.3 If V = {V 1, V2 , V3} is a partition of the variables of the function f
X1 x X 2 x ... x Xn -* Y then v of f with respect to that partition is less than or
equal to vmx. Further, there is no other bound less than Umax

Proof:
First we show that v < [VJ. [VIJ is the total number of columns in the partition
matrix, therefore the number of distinct columns cannot exceed this number. More
rigorously, [{Ro1t 2Ivi E V1}] < [V] for all v2, since there must be an element in
the right hand set for every element in the left hand set. By definition of EV2 then,
[E,,] < [V] for all v2 and by definition of P,,, v,, [11] for all V2 . Finally, by
definition of v, v < [V1].

Now we show that v < [Y]1I31. [V3] is the number of rows in the partition matrix,
and the partition matrix contains elements from Y. Therefore, each column is a string
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of characters from Y of length [V3] and there can only be [Y11"31 such strings. More
rigorously, recall that C,,,, = (f(vI, v 2, b(1)),f(vI, v 2, b(2)),..., f(VI, v2, b([V;]))). Let
A be the set of all possible C,11,,2's. C, 1 2 is a string on Y of length [V], therefore,
[A] - [Y]IN. By definition of SV2, S, is a subset of A, thus [$S21 :- [A] = [Y][IN.
E,,2 is a partition of S12 and does not contain the empty set so [E,2 ] :_ [S.21. By
definition of vv,, vv 2 [ E2] < [S2] < [Y]V3]. This is true for arbitrary v,,, therefore
V < [Y[tV3].

We have shown that v < [V] and that v < [Y][ '3]. therefore v is less than or equal
to the smaller of these two limits. That is, v < .

There is no bound less than Vmax since we can always construct a function of the
given form with respect to the given partition such that the partition matrix contains
distinct columns up to the v,,a, limit.
3

We can now develop the sufficient condition on [Z] such that decompositions
always exist.

Theorem 5.4 F : Z x V2 x V3 -+ Y and q : V1 x V2 - Z is a trivial decomposition
off : X, x X 2 x ... x X,, --, Y with respect to partition V if and only if [Z] > vmax.

Proof:
First we prove that [Z] > vnmax implies that the decomposition is trivial. Assume
that [Z] > vma.x. By Theorem 5.3, v < v,; with the assumption, this becomes
(Z] _ Vz,,.x _ v,. Finally, from the Basic Decomposition Condition, v < (Z], we see
that decomposition is always possible.

To prove the implication the other way: Assume that the decomposition is trivial;
we want to show that [Z] > 'aVMx. Suppose to the contrary that [Z] < Vma. This [Z]
would be an upper bound on vi, since this decomposition is possible for all functions.
But this bound is less than Vmax, which violates the Theorem 5.3. Therefore, the
supposition is false and the theorem follows.
0

The relationship between [VI] and v is shown graphically in Figure 5.4. We use
the fact that [f] = [V1[V2][V3] to plot v as a function of [Vl with [f] and [V2] as the
only parameters.

The following theorem is the non-trivial basic decomposition condition.

Theorem 5.5 For finite integer n, and finite sets X 1 x X 2 x ... x X,,,Y, let f be a
partial function f : X, x X2 x ... x X,, -- Y. Let V1, V2, and V3 be a partition of the
domain of f. There exists a non-trivial decomposition of f consisting of the functions
0 : V x V2 -4 Z and F : Z x V2 x V3 -- Y such that, whenever f(vi,v 2,v 3) is defined,
f(vj,v 2 ,v 3) = F((v,v 2),v 2 ,v 3) if and only if v< v

Proof:
From the Basic Decomposition Condition we have v < [Z] and from the Trivial
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V

v= [Vi]

V = [Y]A[D(f)I/((V 1[V2])}

Vmax

[Y] (area of possible vs)

[y)~~~ ~ ~ (aeaovpsibl]v

ID(f)]/(V2]

Figure 5.4: Relationship Between v and [Vi], where D(f) = [f]

n-R

Figure 5.5: The Basic Decomposition

Decomposition Theorem, we have that a decomposition is non-trivial if and only if
[Z] < Lmax.
0

We now develop one special case of the above theorem in some detail. Assume
that f : Xn -4X and we require that Z = Xk. The Basic Decomposition Condition
becomes v < [X]k. Define parameter 8 and R such that [Vi] = [X]3 and [2] =

[X](R-°). The parameters n, s, R and k are the number of variables in their respective
groups (see Figure 5.5).

In this special case v,ax becomes the smaller of [X]' and [X][_yl(" - R ) or equivalently,
kmax = min(a, [X](n-R)). Therefore, the Basic Decomposition Condition is always
satisfied if a < k or [X](nR) < k. The special case of this where k = 1 and S = 0 or
a = 1 is the "trivial decomposition" of Curtis'62.
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X1 X2 X3 f g
0 0 0 0 0

0 0 1 0 -0
0 1 0 0 0
0 1 1 0 1
1 0 0 1 1
1 0 1 0 0
1 1 0 1 1
1 00

Table 5.12: Functions f and g

5.2.5 Negative Basic Decompositions

In decomposing a function we are often interested in minimizing the cost of a real-
ization of the function based on that decomposition. We pursue two particular cost
functions.

We use rf to denote the representation of f. DFC(rf) is the decomposed function
cardinality of that representation. DFC(f) is the DFC(rj) when rf is the optimal
representation of f. Similarly, L(rf) is the program length of rf and L(f) is the
optimal program length of f.

Our first cost function L(rf) = 1 + 3n + 2(n + 1)[A] + n[P] + DFC(f) = 1 +
5n + 2(n + 1)([V] + 2[V 2] + (V3 + '1) + [ )] log[Z] + [F] log[Y] reflects interconnection
complexity and DFC. It is possible to completely define any representation ry with
L(rf) bits.

The second cost function DFC(rf) = [4)] log[Z] + [F] log[Y] is a reflection of size
complexity only. However, it is demonstrated in Chapter 4 that size complexity, as
defined by DFC, is the principal component of overall complexity and that DFC is
fundamentally tied to time complexity, circuit complexity and program length.

A decomposition is "negative" if its cost is less than the cost of the un-decomposed
function. L-Negative implies non-trivial.

Theorem 5.6 Being non-trivial is a necessary but not a sufficient condition for a
basic decomposition to be negative.

Proof:
Non-triviality is a necessary condition since if a negative decomposition were triv-
ial then every function would have a negative decomposition and the average min-
imum cost would violate the Average-Minimum Program Length Lower Bound of
Appendix A. That non-trivality is not sufficient can be demonstrated with an exam-
ple. Consider f : {0, 1}' -4 {0, 1} defined in Table 5.12

The partition V = {X,X 2}, V2 = 0, and V3 = {X3} has v = 2 for f and v = 4 for
g. f has a decomposition of the form 4): {0, 1} - {0, 1} and F: {0, 1}2 -+ {0, 1}, i.e.
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Z = {0, 1}. This decomposition is non-trivial since there exists a function (namely
g) that does not have this decomposition with respect to this partition. This decom-
position is also not negative. That is, L(rf) DFC(rf) = 22 + 22 = 8 which is not
less than 2 3 = 8.
0

Explicit statements of the various negative decomposition conditions are of interest
since they are used in decomposition algorithms. The following is called the L-
Negative Basic Decomposition Condition.

Theorem 5.7 A Basic Decomposition : V x V2 --+ Z and F: Z x V2 x V, -- Y of
a function f : X 1 x X2 x ... x Xn - Y with respect to partition V is negative with
respect to L if and only if 1 + 7n + 2(n + 1)([V1] + 2[V2] + [V]) + [Vj [V2] log[Z] +
[Z[V2 [V3 log[Y] < [V1][V2 [V3] log[Y].

Proof:
By definition of a negative decomposition: L(rj) < [X] log[Y] + 1. The theorem
follows by substitution and simplification.
0

The next theorem is the DFC-Negative Basic Decomposition Condition.

Theorem 5.8 A Basic Decomposition q! : V x V2 -+ Z and F : Z x V2 x V3 -4 Y of
a function f : X1 x X 2 x ... x Xn -* Y with respect to partition V is negative with
respect to DFC if and only if [VIllog[Z] + [Z[V3]log[yl < [V1][V] log[Y].

Proof:
By definition of a negative decomposition: DFC(rf) < [X] log[Y. The theorem fol-
lows by substitution and simplification.
0'

The largest (Z] that satisfies the above inequalities is the largest [Z] that will
yield a negative decomposition in the applicable situation. Since [Z] must be greater
than or equal to the column multiplicity v, the above inequalities give the maximum
v that will result in a negative decomposition. Therefore, when we are exclusively
interested in negative decompositions, we are only interested in v's which satisfy the
above inequalities. That is, in the DFC case, [VI] log v + v[V.j] log[Y] < [V1][V11 log[Y].
If vmax is the largest integer that satisfies the negative decomposition condition then
we are only interested in v's which are less than or equal to Vmax. Therefore, when we
are counting columns in a partition matrix, we can stop counting as soon as v reaches

-,,ax. With respect to our special case of the previous section (i.e. f : X" --+ X, Z =
Xk, XV = X 8 ,2 = X(R-.), and V3 = X("-")) the DFC-Negative decomposition
condition becomes k[X]' + [X](k+--R) < [X]. That is, from the theorem above:

[V19log[ZJ + [Z][V log[Y] < [ V][V]log[Y],
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[X] ° log([x]k) + [x]k[x](n - R) log[X] < [X]O[X](n-") log[X],

k[X]5 log[X] + [X](k+n- R) log[X] < [X](n-R+s) log[X],

k[Xj + [X](k+n-R) < [X](n-R+).

With the further specialization that there be no shared variables (i.e. R = 8), the
condition becomes k[X]R + [X](k+n- R) < [X](") or k[X](R-n) + [X](k-R) < 1.

If we define kmax as the largest integer satisfying the applicable condition then
we know that k must be less than or equal to kmax for negative decompositions. It
follows then that the maximum v of interest is inax = [X]kmax.

The important point is that, given n and V, we can directly determine the maxi-
mum v for a negative decomposition. This test can be useful since we may want to
discontinue counting columns in evaluating column multiplicity after we are assured
that no negative decomposition is possible.

We have one final result concerning basic decompositions. Let N be the number
of ways that a set X can be partitioned into three sets V1, V2, V3 .2 The number of
combinations of i elements from the set X, where X has n elements, is n!/(n - i)! =
C(n, i). This takes care of the first set V1. Now select j elements from n - i elements:
(n - i)/(n-i -j)! = C(n -i,j) where j elements go into V2 and (n-i-j) elements
go into V3 . Thus the number of combinations for one partition is C(n, i)C(n - ij).

For each i there are different combinations of n - i elements, so for all partitions,
the number of different combinations is:

n n-i

N E E (ni)C(n-i,j)
i=U j=O

nn-i

=jC(n, i) E C(n - i,j)
i=0 j=0

i n-i n

= C(n,i)1' F C(n - ij)lO'--)l(i) = Z C(n,i)l(1 + 1)(i)(
i=0 j=O i=0

Recalling the Binomial Theorem [41, p.27]:

n

(a + b)" = E C(n, i)a (')b',
i=U

N = _ C(n,i)li2(n - ) = (1 + 2)n = 3n.
i=0

The number of nontrivial partitions (N') can be derived by the same method.
We must make sure that V has no less than two elements and no more than n - 2
elements, so i will go from two to n - 2. Also V2 can have zero elements, but no more

2This result was developed by Tina Normand.
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than n - i - 2 elements, (to make sure V3 has at least 2 elements), so j will.go from
zero to n - i - 2. The result is:

n-2 m-i-2N'=r, E C(n,i)C(n- i,j)
i=2 j=O

n-2 n-i-2

= Z C(n,i) E C(n -ij)1(n-i)i(n-i-)
i=2 j=O

n-2

= E C(n,i)(2'- C(n - i,n - i- 1) - C(n - i,n - i))
i=2

n-2

-E C(n,i)(2' - (n-) - 1)
i=2

n-2 n-2 n-2

- LG(n,i)2'-(n + 1) E C(n,i) + E C(n,i).
i=2 i=2 i=2

This can be further reduced since E,'=oiC(n,i) = n2(n - 1) [65, p7l].

5.3 The Ada Function Decomposition Programs

The PT 1 function decomposition algorithm takes a binary partial function of the
form f : {0, 1}n --- {, 1} and attempts to decompose the function into components
0 and F such that f(x,y,z) = F(4(m,y),y,z) where x, y, and z are vectors. We are
especially interested in decompositions where the size of the decomposition (i.e. the
size of F plus the size of 0) is less than the size of the original function. The algorithm
accomplishes this decomposition by searching through all possible partitions of input
variables and testing to see if the function decomposes for that partition. The test for
decomposition and other theoretical aspects of function decomposition are developed
in the preceding section. If the function does not decompose with respect to a given
partition then another partition is tried. If the function does decompose then an
attempt is made to decompose each of the component functions. As the algorithm
searches through possible decompositions, any decomposition which has lower cost
than any previous decomposition is recorded. When the search is completed, we have
the lowest cost decomposition (lowest cost of those considered) of the input function.

Several versions of this function decomposition algorithm were implemented in
Ada during the PT 1 project. This section describes these programs. A User's Guide
for the AFD program is in Appendix B. The PT 1 function decomposition software
was written in Ada on the VMS System running on a Vax 11/780. This Vax is part
of the Fire Control Simulation (FICSIM) Facility of WL/AART located in Building
22 at Wright Patterson AFB, Ohio.
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DECONPRECORD
- A-TABLE --- > TABLE-RECORD

- VARIABLES --- > LABELS array of

- NATURALS
- A-FUNCTION ---> TABLE array of

- ENTRIES:

(T,F,TBD)
- A-PARTITION --- > PARTITION-RECORD

- COLUMN-VARIABLES ---> LABELS.

- ROW-VARIABLES ---> LABELS.
- NEW-VARIABLES ---> LABELS.

- APARTITIONMATRIX --- > PARTITION-MATRIX array of
- COLUMNS.

- FUNCTIONS ---> TABLE-RECORD.

- UNIQUE-COLUMNS ---> TABLE.
- MAXNU: INDEX: INTEGER
- NU: INDEX.

- LEFTDECOMP ---> DECOMPRECORD.

- RIGHTDECOMP ---> DECOMPRECORD.
- CHAINDECOMP ---> DECOMPRECORD.

- DECONPCOST: NATURAL

Figure 5.6: DECOMP-RECORD Data: Structure

5.3.1 Program Functional Description

DECOMP-RECORD is the principal data structure for the function decomposition
algorithm. The structure of a DECOMPRECORD is shown in Figure 5.6. Arrows
in Figure 5.6 indicate a pointer type and the type being pointed to. Record and array
components are preceded by a dash and are indented under the appropriate type.
Names followed by a period have additional structure but that structure is shown
elsewhere in the figure.

After inputting a function, the-algorithm runs a FIND.LOWEST-COST routine
and outputs the results. Figure 5.7 is a flow chart for the FINDJOWESTCOST
routine.

Figure 5.8 is a psuedo-code representation of FIND-LOWESTCOST and its prin-
cipal component DECOMPOSE-CURRENT.

Figure 5.9 shows examples of the main data objects at various stages.
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Figure 5.7: FIND-.LOWESL-COST Flow Chart
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Find Lowest Cost Decomposition
Algorithm

If the CUR-€t'Z Decomposition Record Pointer is null
then return
else

Begin
Set BEST=CURRENT
Repeat

Generate next combination of variables
if CURRENT decomposes then DECOMPOSE CURRENT
FIND LOWEST COST of left, right, and chain functions
Calculate cost of CURRENT
if cost of CURRENT< cost of BEST then BEST:=CURRENT

Until all combinations of variables have been checked

End

Figure 5.8: FINDLOWEST-COST Psuedo-Code

5.3.2 Program Software Description

The main program for the AFD algorithm is the procedure PBMLDRIVER. Proce-
dure PBMLDRIVER uses five packages of software. Package PBMLTYPES defines
the data structures and has no body. Package PBMLFREE has 14 procedures for
deallocating pointers. Various utility subprograms are in package PBMLUTIL, which
contains four procedures and ten functions, and PBMLPACKAGE, which contains
11 procedures and three functions. The input and output routines are in PBML-IO.
PBMLJO contains 11 procedures. The AFD software is contained in nine files. There
are approximately 1,500 lines of code.

Figure 5.10 represents the compilation dependencies of the AFD software. The
arrow means "is dependent upon." For example, PBML_IO should be compiled after
PBMLUTIL. After all files have been compiled, PBML.DRIVER should be ACS
LINKED and RUN.

5.3.3 Versions of the AFD Algorithm

Ten version of the AFD program were implemented. We developed all these versions
of the AFD algorithm in hopes of finding two algorithms. We had hoped to find a
non-exhaustive optimal algorithm. That is, an algorithm that always finds the lowest
possible cost and does so without considering all possible decompositions. We are
doubtful that we succeeded in this. We had also hoped to find an algorithm on the
knee-of-the-curve of run-time versus decomposition cost. We found that even our
fastest versions were able to almost fully decompose most functions.
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Organization of PBML Code

procedure PBML_DRIVER

V
package PBM.PACKAGE

V
package PBMLIO

V
package PBMLUTIL

I
V

package PBMLFRBE

V
package PBML_TYPES

Figure 5.10: Compilation Dependencies

Search Constraints Common to All Versions

An exhaustive search approach to function decomposition becomes intractable for
functions on more than two or three vari.bles. Therefore, it is necessary to limit
the search. There are some search limits that all the versions have in common. For
a given partition of variables, the basic approach of each version is to compute the
column multiplicity v of the function with respect to that partition. The value of
v is then compared to a threshold that is version dependent. If the threshold is
exceeded then this decomposition is dropped from further consideration. The idea
is that we only want to pursue decompositions that are reducing cost. It is in how
much of a reduction we want or how we measure cost that the versions differ. For our
highest threshold (i.e. most exhaustive search) we know of no functions where a more
exhaustive search would produce a lower overall cost decomposition. However, for
our other thresholds we know that some desirable decompositions are being dropped.
Using this threshold significantly reduces the search space; since otherwise every
partition yields a decomposition whose children must be decomposed before we know
that it will not result in an lower overall cost.

When the threshold is not exceeded and the decomposition is pursued, the first
step is to form the children of the decomposition, F and 4. All the versions form
F and 4' by using the binary equivalent of an enumeration of the columns generated
in counting up the column multiplicity. This simple approach to defining F and 4'
substantially reduces the overall search space. There are typically many different F's
and O's for a given decomposition. At least in some cases, how F and 4' are defined
affects the decomposability of F and 4' and, consequently, the eventual cost of the
overall decomposition. Therefore, to be exhaustive, we must assess the decompos-
ability of all the different possible values for F and 4, before arriving at a specific F
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and q. None of the AFD versions did this.

Search Constraint Differences Between Versions

There are two classes of variable partitions used by the AFD algorithms. Version 1
and all the 2 versions (i.e. 2, 2a, 2b, 2ab) partition the variables into two disjoint sets.
One set is input into F and the other into q. Version 3 and all the 4 (i.e. 4, 4a, 4b,
4ab) versions partition the variables into three disjoint sets. One set is input into F
only, the second set is input into q only, and the third set is input to both F and 0.
We call this latter class of partitions the "shared variable" class while the first class
is cailed "no-shared variables." When only no-shared variable partitions are used in
a search it is possible for the specific values assigned to F and 0 to affect the cost
of the overall decomposition. We know of no cases where the method of assigning
values to F and 0 affects the overall decomposition when shared variable partitions
are used in the search. It is possible that one has an alternative between searching
through values for F and 0 and searching with shared variable partitions; with either
approach resulting in optimal decompositions.

The "a" versions (i.e. versions 2a, 2ab, 4a and 4ab) differ from the other versions
in that they are "greedy." The "" versions search through partitions in order of
increasing numbers of variables input into 0. When a cost saving decomposition is
found for some number of input variables into 0 then partitions with a larger number
of variables input into 0 are not considered. That is, once a decomposition is found
for some number of variables into 0 we pursue that decomposition but do not backup
to consider larger numbers of inputs into 4. The idea here is that we want to break
the original function into pieces that are as small as possible. Therefore, when we
have succeeded in breaking out a small piece, we do not worry about trying to break
out a larger piece. The "a" versions run substantially faster than the other versions
and perform only slightly worse in terms of the cost of the decompositions produced.

As discussed previously, the AFD algorithms compare the cost of a candidate
decomposition to a threshold. There are two methods for computing the cost of a
candidate decomposition. The "b" versions (i.e. version 2b, 2ab, 4b, 4ab) compute
cost based on the cardinality of the components (DPFC). The other versions compute
cost based on the number of variables input into each component of the decomposition
(DFC). That is,

DPFC= [pi]
PiEll

and
DFC = Z 2".

pIEP

When the components are total functions the two costs are the same. However,
when a component is a partial function, which can occur even when the input is a
total function, DPFC is less than DFC. Since candidate decompositions are pursued
whenever the cost is less than the threshold, "b" versions will in general conduct a
larger search.
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Version 1 : NUMAX = min(NUFEATURENULUB).

Version 2 : NUMAX = min(NUNEGALLTOTAL,NULUB).

Version 2a : NUMAX = min(NU_NEGALL_TOTAL,NULUB).

Version 2b : NUMAX = min(NUNEG,NULUB).

Version 2ab: NUMAX = min(NUNEG,NULUB).
Version 3 : NUMAX = min(NU_FEATURE,NULUB).

Version 4 : NUMAX = min(NU_NEGALLTOTAL,NULUB).

Version 4a : NUMAX = min(NU_NEGALLTOTAL,NU_LUB).

Version 4b : NUMAX = min(NUNEG,NULUB).

Version 4ab: NUMAX = min(NUNEG,NULUB).

Figure 5.11: NUMAX for Each Version of the AFD Algorithm

Finally, the versions differ in the threshold they use to evaluate candidate decom-
positions. In essence, versions 1 and 3 set the threshold such that decompositions
are pursued if they are "featured." A decomposition is featured if 4 has fewer output
variables than input variables (c.f. [48, pp.64-66]). The "2" and "4" versions (i.e. ver-
sions 2, 2a, 2b, 2ab, 4, 4a, 4b, and 4ab) set the threshold such that decompositions are
pursued if they result in a cost reduction (what we call a negative decomposition). In
general there are many more featured decompositions than negative decompositions
of a given functions. Therefore, the featured based versions are much more exhaustive
than the other versions.

NUMAX is defined in Figure 5.11. The various NU's are defined as follows
where a is the number of inputs to 0 only and R is the total number of variables
input to qS (including shared variables).

* NULUB is the least upper bound on v for a given partition of variables.
NU.LUB is min(2-,22"- ).

* NU.NEG is the v such that if v > NUNEG then no negative decomposition
exists for the partition being considered. NUNEG is the largest v such that
[(log(v))21? + v2"-'1 < 2".

* NU.NEGINPUTTOTAL is the v such that if the input function is total
then v < NUNEGINPUTTOTAL implies that a negative decomposition
necessarily exists. This was used in the early b versions with unintended results.
NUNEGINPUTTOTAL is the largest v such that [(log(v))2 R + v2" 8] <
[f].

* NUNEGALL-TOTAL is the v such that if all functions involved are to-
tal then v < NU.NEGALLTOTAL implies that a negative decomposi-
tion necessarily exists. NU.NEGALLTOTAL is the largest v such that
k2r-' + 2 k-s < 1.
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* NUFEATURE is the v such that v < NUFEATURE implies that a fea-
tured decomposition necessarily exists. NU-FEATURE is 2 - 1.

NUMAX is used to halt the counting of columns in determining column multi-
plicity and, when v does reach NUMAX we know that we do not want to pursue this
partition of variables any further. However, in general, just because v is less than
NU-MAX does not ensure us that this partition will be a desired decomposition.
Therefore, it is necessary to go ahead and form the decomposition (F and 0, but do
not try to decompose F or 0) and determine its cost before deciding whether or not
to include it in the current decomposition tree. We think it turns out that, except
for the b versions, v less than NUMAX does ensure us of a desired decomposition.

The relationship between the search space of the different versions is V2a C V2 C
V2b C V1 C V3, V4a C V4 C V4b C V3 and V2i C V4i for i = a,b, ab or
blank. Versions 2a and 4a were used for most of the experimental work described in
Chapter 6. Unlike all the other versions, we found no functions that version 3 did
not find the best known representation. Therefore, version 3 can not be ruled out as
a possible optimal algorithm.

In summary, there are essentially three dimensioas in the AFD version "space."

* 1. Greedy and 2. Not Greedy.

. 1. Not Shared and 2. Shared.

* 1. Negative DPFC, 2. Negative DFC and 3. Features required.

Thus, a point in this space (e.g. (1, 2,1)) corresponds to a version of the AFD algo-
rithm; in particular:
Version 1 is (2,1,3).
Version 2 is (2,1,1).
Version 2a is (1,1,1).
Version 2b is (2,1,2).
Version 2ab is (1,1,2).
Version 3 is (2,2,3).
Version 4 is (2,4,1).
Version 4a is (1,2,1).
Version 4b is (2,2,2).
Version 4ab is (1,2,2).
If version i has coordinates (ai, bi, ci), version j has coordinates (aj, bj, cj) and i J
then the search space of version j is a proper subset of the space of version i whenever

ai >_ aj, bi > bj, ci >_ c1 .

For example, version 4b = (2,2,2) does a larger search than version 4 = (2, 2,1).
These relationships are summarized in Table 5.13. Note that we cannot draw conclu-
sions from this about the relative size of the searches of some versions, e.g. version
2ab versus 4a. Note also that we did not implement versions corresponding to (1, 1, 3)
or (1, 2, 3) because the feature based versions were so slow.
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1. Not Shared:
i. Neg DFC 2. Neg DPFC 3; Featured

1. Greedy 2a 2ab
2. Not Groedy 2 2b I

2. Shared:
i. Neg DFC 2. Neg DPFC 3. Featured

1. Greedy 4a 4ab -

2. Not Greedy 4 4b 3

Table 5.13: AFD Algorithm Version Space

5.4 Ada Function Decomposition Program Per-
formance

We are interested in how well the AFD algorithms decompose functions and in how
long the decomposition takes. This section reports on the results of several experi-
ments to assess the algorithms' performance.

We used the various versions of the Ada Function Decomposition program on
VAX and MICROVAX computers to decompose well over 1000 different functions,
ranging in size from 4 variables to 10 variables, ranging in cost complexity from 0
percent (most patterned) to 100 percent (completely unpatterned or 'random') and
ranging in number of cares from 5 to 100 percent. Since many different experiments
had been performed, there was adequate data to draw some conclusions about the
relative performance of the different versions of the algorithm in terms of both cost
reduction and run-time. Two subsets of data were extracted from the PT 1 data base
and some statistical analysis was performed on them.

The first subset, 'Set A,' was composed of the output for all functions that had
been decomposed by all ten of the versions of the program. There are 64 functions in
this category. The second subset, 'Set B,' was composed of the output for all functions
that had been decomposed by every version of the program with the exception of
version 3. Using version 3 to decompose functions on six or more variables generated
run-times that were far too great. Therefore, because Set A excluded all functions
that were not decomposed using version 3, it necessarily excluded all functions on
more than five variables (with the exception of two very simple functions). Set B was
formed so that we could compare the other nine versions on functions of larger size.
Set B contained 119 functions. Set A is a subset of Set B.

The first 14 functions in Set A were from a set of 'trick functions' that was con-
structed to test certain aspects of the various algorithms. This included the 'checker-
board function' on five, six, seven and eight variables ; four different functions whose
optimal decompositions included shared variables; and several functions that could
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not be decomposed. The last 50 functions of Set A were all randomly generated
functions on five variables.

Set B included all the functions in Set A. In addition, it included images of
the letters R and A, and several test functions on six and seven variables that were
designed either to decompose in certain irregular ways or to be non-decomposable. It
also included a group of 50 random six-variable functions.

To summarize, the functions in Sets A and B ranged from the highly patterned
checkerboard functions to the very unpatterned 'nodecomp' functions, but the great
majority of them were unpatterned randomly generated functions; they ranged in
size from four variables to eight variables but the majority of them were either five
or six variable functions; and all of them without exception were total (i.e. none of
them had any 'don't care' conditions). In addition to these sets where comparisons
were made on average, there are some individual functions whose decomposition gives
some insight into the algorithms' performance.

The following two sections consider the relative performance of the various versions
in the individual areas of cost reduction and run-time.

5.4.1 Cost Reduction Performance

Set A and Set B Comparisons

Cost reduction is the primary aim of function decomposition. The driving purpose
behind each of the versions of the program is to find a low cost representation of
any given function, if one exists, and, hopefully, to find the lowest or "optimal"
representation of the function. While we cannot guarantee that any decomposition
found is truly optimal (except in a few cases that are amenable to theoretical analysis)
the data that we collected have shown that all the versions of the program are able
to find relatively low cost representations for most functions that are decomposable.
For functions that are highly patterned and have theoretical optimal representations,
all of the versions are able to find the optimal representations. For functions that are
more complex, the different versions vary somewhat in performance with the more
complete searches generally finding lower cost representations. The results of the Set
A comparison bring out this difference primarily with respect to version 3 on five
variables or less. The results on Set B show this difference on the other versions.

Version 3 may find optimal representations. No other version was ever able to
find any representation of a function with a lower cost than was found by version 3,
(although they were often able to find a representation with the same cost), nor were
we able to decompose any functions by hand to a lower cost.

The algorithms that do not directly consider shared variables occasionally found
a shared-variable decomposition through the creation of a new variable and a table
of zero cost.

The versions' cost reduction performance is shown in Table 5.14. Probably the
most important thing to note from this is that, in relative terms, the difference in cost
reduction performance from the least exhaustive algorithm (version 2a) 'D the most
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Version Set A DFC Set B DFC
3 15.93 NA
1 16.19 38.34
4 16.38 38.35

4a 16.38 38.35
4b 16.38 38.39
4ab 16.69 38.52
2b 17.00 38.69
2 17.06 38.72

2a 17.06 38.72
2ab 17.12 38.69

Table 5.14: Average DFC for Set A and Set B

exhaustive algorithm (version 3) is quite small. Other data suggested that version 2a
was particularly likely to do nearly as well as version 3 when the function being decom-
posed was very patterned. Since most of the functions that were decomposed during
the remainder of the phenomenology study fell into the highly patterned category,
this result was one of the things that influenced us to use the 'greedy' algorithms.

We not only wanted to compare the decomposition performance between the ver-
sions, we also would like to know how close the algorithm was doing relative to the
best possible decomposition. Some of the functions that we ran have well known
representations (e.g. addition, parity, palindromes, functions with only one minority
element). All AFD versions found the expected decompositions for these functions.

K-Clique Function Example

There were some cases where version 2a performed poorly. However, these were runs
involving large functions (n = 10) where the algorithm was not allowed to run to
completion. For example, the 3-clique function on a 5-node graph is a function with
10 variables. Version 2a was allowed to run on this function for about 170,000 seconds.
The best decomposition found to that point had a DFC of 360 or 35.2 percent. Version
4a found a 164 DFC or 16.0 percent decomposition at 65,000 seconds. We know this
function has a 116 DFC or 14.5 percent decomposition using Savage's sum-of-products
form. Therefore, when the algorithms are not allowed to run to completion, version
4a can substantially out'perform version 2a in a given amount of time.

Decomposition of Neural Net Like Functions

The AFD program tries to decompose functions by breaking out one piece at a time.
We wonder whether or not there are some decompositions that cannot be found
this way? Neural Nets have an architecture that has a low Decomposed Function
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Figure 5.12: Neural Net Gross Architecture

Architecture [f] NN-DFC
6-2 64 44
8-2 256 60
8-4 256 124

Table 5.15: DFO of NN Like Architectures

Cardinality (DFC) but are not in a form that AFD would ever generate. Neural Nets
have a gross architecture like Figure 5.12. Each of the boxes in the first layer have
all n variables as input. Neural Nets have low computational complexity because the
function in each box is very patterned. In real Neural Nets the function is a sum of
products and perhaps a threshold. For comparison purposes we can let these boxes
have a function of minimum cost (that is minimum among functions without vacuous
variables). Each box in a Neural Net has an architecture like Figure 5.13. Therefore,
each box has a DFC of 4(n - 1), where n is the number of input variables. Consider
three specific Neural Net architectures. These architectures are identified as a - bi
where a is the number of variables and b is the number of nodes in the first layer.
Figure 5.14 shows the 6-2 architecture. The DFC's of these architectures are equal to
b(4(a - 1)) + 4(b - 1), see Table 5.15. Most other architectures on a small number of
variables have a DFC which exceeds [f]. Although we know that the AFD program
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Figure 5.13: Detailed Architecture of a, Neural Net Component

----- j

Figure 5.14: Specific NN Architectures
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C

AFD-DFC
Architecture [f] NN-DFC Maximum Average

6-2 64 44 40 25.2
8-2 256 60 56 42.0
8-4 256 124 100 48.8

Table 5.16: AFD-DFC of NN Like Architectures

will not find the same architecture as the Neural Nets, we hope that it will findl some
other architecture with at most the same DFC. If it does not then we know that the
AFD approach fails to recognize this class of patterns. To test this we generated 10
functions with each of the NN architectures. The function for each box was selected
randomly from the 2-variable functions with DFC of 4 (i.e. constant and projection
functions were excluded). These functions were then run on AFD version 2a. The
results are as in Table 5.16. In summary, the DFC found by AFD was always less
than that of the original NN architecture.

5.4.2 Run-Time Performance

Running on a Vax 11/780 with a throughput of roughly 1 million-instructions-per-
second (MIPS), the different versions exhibited run-times ranging from less than a
second up to more than 100,000 seconds. In order to design a reasonable number
of experiments of a reasonable size, we needed an ability to estimate the run-time
as a function of the number of variables, number of cares and number of minority
elements, and version of the AFD program. This ability to estimate run-time allowed
us to experiment with the best version of the AFD algorithm that time would allow.

The first step in our run-time analysis was to make comparisons of all algorithms
on the Set A and Set B functions. Table 5.17 shows the average run-time comparisons
for Set A and Set B. Run-time is measured in seconds of CPU time on our Vax 11/780.
Although the cost reduction performances of all the versions were roughly equivalent,
their run-times varied greatly.

Some versions always had lower run-times and decomposed functions to lower costs
than certain other versions. For instance, version 2a runs faster than version 2ab and
finds an equal or lower cost decomposition for every function in Set B. After getting
rid of the versions that did not show any increase in cost r.eduction performance to
justify their increase in run-time, we were left with the follvwing versions, ranked
from longest to shortest run-times: version 3, version 1, version 4a, version 2b and
version 2a.

We searched the PT 1 data base and pulled out the functions on a given number of
variables that were submitted to one of the five 'good' versions and recorded how many
there were and their maximum, minimum and average run-times. There were two
distinctions that we made in this process. First of all, we did not include run-time data
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Version "Set A Set B
2a 0.9 2.4
2 1.0 2.5

2ab 1.5 4.0
2b 2.0 4.9
4a 7.0 13.0

4ab 10.4 13.7
4 10.6 13.7

4b 14.0 16.0
1 70.0 275.0
3 220.0 NA

Table 5.17: Average Run-time for Set A and Set B

on functions with vacuous variables. The reason for this is that once the AFD program
has eliminated one or more vacuous variables, it is then decomposing a function of
one or more fewer variables. Secondly, we made a distinction between the run-times
on the functions that did decompose and the ones that did not. The run-times of
the functions that did not decompose all tended to be very closely grouped, while the
functions that did decompose generated run-times that varied widely. Tables 5.18
and 5.19 show these results. Thefour entries for each version - number of variables
combination are (from top to bottom): number of runs, minimum run-time, average
run-time, maximum run-time. Note the expected exponential trend in increasing
run-times for any given version on functions that do not decompose.

Several experiments were performed to assess the relationship between run-time,
DFC and number of minority elements. The number of minority elements is the
number of elements of a function that have output 1 or the number of elements that
have output 0, which ever is smaller. These experiments were all carried out on
version 2a.

Figure 5.15 shows the relationship between run-time and DFC for eight variables.
We found no consistent pattern other than a general tendency for functions that
decompose to have larger average and much larger maximum run-times.

It was found that one of the largest factors influencing run-time was the number of
minority elements in a function, particularly when the number of minority elements
was very small; therefore, functions were generated on four, five, six, seven, eight and
nine variables which each had a fixed number of minority elements but were otherwise
generated with no intended pattern. The results are shown in Figures 5.16 through
5.18. Functions with a proportionally small number of minority elements always
decompose somewhat, and most of those that decompose have widely varying run-
times. Once the number of minority elements increases past a critical point (around
15 percent of the cardinality of the function) then a randomly generated function will
usually not decompose (or decompose very little) and the run-time associated with it
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No. of Var Vet. 3 Vet. 1 Vet. 4a Ver. 2b Ver. 2a
4 5 5 5 5 5

10.6 2.4 1.3 0.5 0.5
14.5 3.1 2.9 0.6 0.5
22.0 3.5 3.3 0.7 0.7

5 5 5 5 5 5
982.3 27.1 15.5 1.6 1.5

1107.7 32.2 15.5 1.6 1.6
1365.6 37.0 15.6 1.7 1.6

6 5 5 5 5
380.2 73.1 5.7 5.5
448.6 73.7 5.8 5.5
536.8 74.3 5,9 5.5

7 3 5 5 5
21952.9 340.4 21.6 21.1
23858.2 342.4 22.5 21.2
25763.1 343.8 23.2 21.4

8 5 5 5
1534.4 87.4 80.2
1538.4 92.5 80.9
1541.7 94.8 81.6

9 5 5 5
6882.3 352.8 324.2
6960.0 370.6 330.3
7049.7 383.6 336.2

10 1
1375.0
1315.0
1375.0

Table 5.18: Run-times for Functions That Did Not Decompose
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No. of Var Vet. 3 Vet. 1 Ver. 4a Ver. 2b Ver. 2a
4 36 37 41 37 2

15.6 2.4 1.2 0.7 0.6
24.3 4.1 1.9 0.9 0.6
43.9 5.4 6.7 2.3 0.7

5 18 32 21 17 17
2113.6 42.6 15.71 2.0 1.6
3177.4 73.0 106.0 5.7 2.2
4700.9 108.6 326.3 17.8 7.0

6 19 26 .4 118
NA NA 10.6 4.1

1528.2 92.2 116.2 19.8
2443.4 326.2 457.4 248.8

7 4 3 130
NA NA 8.0

4245.6 48.3 1289.1
16884.8 144.3 5415.0

8 101
20.1

666.5
6293.0

9 20
139.5

6109.8
39930.5

Table 5.19: Run-Times for Functions That Did Decompose
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will be very close to the expected run-time for any unpatterned function.

5.4.3 Summary

There was little difference in the average DFC performance between versions. There
are cases though with substantial differences. There was a lot of difference in the
average run-time between versions. We narrowed the number of versions to the five
best, a set of versions where an increase in average run-time always corresponded to
an increase in cost reduction performance. The experimental run-time data was con-
sistent with the expected exponential relationship between run-time and the number
of variables. There is a great deal of run-time sensitivity to the number of minority
elements in a function. Even the faster versions had sufficient cost reduction perfor-
mance to allow for some interesting results in the Pattern Phenomenology experiments
(Chapter 6).

5.5 Summary

This chapter introduces the problem of function decomposition and discussed the Ada
implementation that was used in this project. Approaches to decomposition consist
of a test for decomposability and a search methodology. The test for decomposability
is understood theoretically and is described in detail. The approaches to searching
have little theoretical basis. We described several approaches that were experimented
with in this project. We found that a 1 MIPS machine is capable of decomposing
most functions on less than 10 binary variables in a matter of hours.
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Chapter ,

Pattern PhenomenQlogy

whqeA you, can, measure, what you are, speaking alkout, and express it
in numbes, yq, know soz, thing about it;, but wkeq you cannot express
it nu r you~ lkNedge is; oa meager, aud unsatisfactory kind.'.",

- Lord Kelin.

6.1 Introduc t ion
This chapter hias tywoobjectites. On le one hand we experinentaly test our- ass ertioA
that Decompoqed Fuctig, C ardinality, (DFC,) a yery general zneas.v e of, p ttern-
ness. On. the other hand,, assuming that DFC is a general nwasure. 9f- pttern-ness,
we begin sizing up, the w9rld relative, to this new metric.

The first Qbjective is complementaryt9 the Chapter 4 theoretical 0me~iostratioA
of DFO's generality., In Chap, t.r. 4 we r¢ated DF. to, the Isual measures oftcomputa-
tional complexity; informati0on theoretic program length, algorithmic time complexity,
and circuit size qomplexity.,

This chapter reports pattern-ness mraqsurements for many different kinds of things.
These experiments are viewed in, a'yi analogous to the first experiments with othe;
scientific instruments., For examp1e the first uses of' the mxrcury expaAsion ther-
mometer were, qtj the s.me titre, aessing the ;eaqonableness of the tqn p.erature
readings .nd quatifying. fo;, the st ti e yrious important temper.tures (_g, melt-
ing points). The aknalogy. ext d4s to tfe difference between per eiyed teperature
and actual tempera ture. 'eTevmperature" ' first became a concept based on thi general
sensation of warmth ,qA cold. It only he came a precise objective physial p, qperty
after the invention 9f a the mo ieter. We pw accept that any dfferencs, between
sensed an4d measured temp.grqures are due to 'th.ermal illusions" rater than spome
failing of thermometers. While we insist t hat a temperature measuring device reflect
general trendg in sseed tlmp.prature we expect situations were there are difererles.
When we are cold, things, seem to he warmer than a thermometer would indicate.
Therefore, a thermometer, is not ikn exac predict9r of sensed temperature. However,
we would not accept a thermometer as, a measure of temperature if it got too, far



from our expectations. We think of DFC as a measure of pattern-ness much like
a thermometer is a measure of temperature. We expect "pattern illusions" of two
kinds. First there will be functions that are patterned whose pattern-ness is of a kind
that we do not appreciate. Thinking now in terms of the pattern-ness of an image
as compared to the DFC of the function that generates the image, some patterned
functions (e.g. the prime number acceptor) will not look patterned to us. A second
pattern illusion might result from our tendency to impose a certain degree of order on
things. For example, people can see a face in almost any image with two horizontally
displaced dark spots. As more specific examples, reference Figure 6.13 and 6.17; note
that character 31 of font 3 looks patterned but does not have low DFC; character 48
of font 2 with permuted variables does not look patterned but has low DFC.

There are a few complicating factors in these experiments. For one thing we
cannot be sure that the AFD program has found the true minimum cost. Most of the
runs reported in this chapter were done with version 2a, the balance were done with
version 4a. As indicated in Chapter 5 we do not think we are missing the optimum
by very much, but there is certainly some bias on the measured DFC as compared to
the true minimum DFC. Also, as discussed in Chapter 4, DFC does not include the
costs of interconnections. Therefore, things that decompose but do so with high DFC
may not be patterned at all. Finally, the AFD program's run-time is exponential in
the number of input variables. Therefore, we are limited to measuring the DFC of
functions with no more than about ten variables.

6.2 Randomly Generated Functions

6.2.1 Introduction

Patterned functions are both extremely rare and extremely common. If you look at all
functions and choose a function at random, assuming all functions are equally likely,
then the function almost certainly will not be patterned. Have you ever noticed
that if you watch a television that is not receiving a signal that realistic images
never seem to appear? If what we are seeing is a truly random image then any
particular realistic image (e.g. John Wayne sitting on a horse) is just as probable
as any particular random looking image. You can watch these random images for
a long time and, although some strange psychological phenomena start to happen,
you never see anything that is remotely realistic. Realistic images are patterned and
patterns are extremely rare in the space of all functions. On the other hand if you
pick realistic functions, such as functions with names (e.g. addition, sine, palindrome
acceptor), real images, real sounds, etc. then the function almost certainly will be
patterned. That is, patterns are extremely common in the real world. It seems to us
that this is a physical property of the world, kind of like mass or any other physical
property.

This section will assess the cost distribution (mean, maximum, minimum, and
occasionally standard deviations) for arbitrary functions, functions with a specific
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number of minority, element.s,, and functions with a specific number of cares. This
assessment will be. based on theoretical and, experimental results.

6.2.2 Completely Random Functions

This section is concerned with the cost of completely random functions. That is', the
class of functions to be considered includes all functions and each function has the
same probability of being chosen as any other function. Of course these functions are
"random!' only in the sense that generating a function using- a random source of O's
and l's is one way of generating a sample of this class. All the functions in this class
are completely deterministic. That is, they all produce a specific output for a specific
input. Later sections will limit class membership to those functions with a specific
number of minority elements or a specific number of cares.

We need some initial results that will allow us to characterize the number of
functions with respect to DFC.

Theorem 6.1 The minimum DFC of a function is either 0, 2, or a sum of powers
of 2 greater than 2.,

Proof:
DFC is a sum of powers of 2 by definition. If a minimum representation has cost
greater than 2 and an individual component of cost 2 then we must have a situation
where the component of cost 2 (pl) is connected to another component (p2). There-
fore, P2 could be redefined without increasing P2's cost such that P, is not required.
The representation with the redefined P2 would have lower cost than the original rep-
resentation which contradicts the assumption that we began with a minimum cost
representation. Therefore, the assumption that we can have a minimum cost repre-
sentation with a component of cost 2 is false.
01

Theorem 6.2 An integer n is the sum of powers of 2 greater than 2 if and only if n
is evenly divisible by 4.

Proof:

Assume that n is the sum of powers of 2 greater than 2, i.e. n = P 2 where each
pi 2 2. Thus, n = 4 t=I 2P-2 where pi - 2 > 0. The sum is a whole number qince
each of the terms is a whole number. Thus, n is divisible by 4.

Assume that n is divisible by 4, i.e. there exists a whole number n' such that n = 4n'.

Thus n = 4.
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Theorem 6.3 All functions must have DFC's of 0,..2, or multiples of 4.

Proof:
Follows from Theorems 6.1 and 6.2.
0

Theorem 6.4 The maximum number of non-vacuous variables (n') for a function
with DFC> 4 is n' = _.. + 1.

Proof:
It follows from Theorem 6.5 that 4(n' - 1) is the minimum cost for n' non-vacuous
variables; that is n' < "-7 + 1. The equality follows since --T + 1 is always an
integer by Theorem 6.2.

Now we consider the number of functions of a given cost:

* cost = 0: There are n projection functions and 2 constant function for a total
of n + 2 functions of cost 0.

• cost = 2: There are n complements of the projection functions for a total of n
functions of cost 2.

* cost = 4: There can only be .two non-vacuous variables by Theorem 6.4. There
are n choose 2 (or n(n - 1)/2) pairs of variables. Let n' = 2. There are 22"'
total functions on n' variables. Of these, n! + 2 have cost 0 and n' have cost
2. By Theorem 6.3 above, no functions have cost 1 or 3. Therefore, there are
22"' - (n'+ 2) - n' functions left of cost 4. Since n' = 2, 22"' - (n' + 2) - n' = 10.
Therefore, there are 10n(n - 1)/2 functions of cost 4.

* Cost = 8: There can only be three non-vacuous variables. There are n choose
3 (or n(n - 1)(n - 2)/6) triples of variables. Let n' = 3. There are 22"' total
functions on n' variables. Of these, n' + 2 have cost 0, nt' have cost 2 and
lOn'(n' - 1)/2 functions of cost 4. By Theorem 6.3 above, no functions have

cost 1, 3, 5, 6 or 7. Therefore, there are 22" ' - (n' + 2) - n' - 10n'(n' - 1)/2

functions left of cost 8. Since n' = 3, 22"' - (n' + 2) - n' - 10n'(n' - 1)/2 = 218.
Therefore, there are 218n(n - 1)(n - 2)/6 functions of cost 8.

* Cost = 12: There can only be four non-vacuous variables. There are n choose
4 (or n(n - 1)(n - 2)(n - 3)/24) groups of variables. Let n' = 4. There are
22"' total functions on n' variables. Of these, n' + 2 have cost 0, n' have cost 2,
10n'(n' - 1)/2 functions of cost 4 and 218n'(n' - 1)(n' - 2)/6 functions of cost
8. By Theorem 6.3 above, no functions have cost 1, 3, 5, 6, 7, 9, 10, 11, 13,
14, or 15. We do not know how many functions there are of cost 16, but we
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DFC Numbei of functions
0 6
2 4
4 60
8 872
12 5,794
16 58,800

Total 65,536
Average 15.53

Less than 16 10.28%

Table 6.1: Number of Functions for a Given DFC

believe there are 58800. This comes from the Pascal Function Decomposition
Experiment where we decomposed virtually all functions on 4 variables. The
number of functions of cost 0, 2, 4 and 8 corresponds exactly to that predicted
above for n=4, which lends some credence to the 58800 figure. Therefore, there

are 22"' - (n' + 2) - n '- lOn'(n' - 1)/2 - 218n'(n'- 1)(n'- 2)/6-58800 functions

left of cost 12. Since n' = 4, 22n' - (n' + 2) - n' - lOn'(n' - 1)/2 - 218n'(n' -
1)(n'- 2)/6 - 58800 = 5794. Therefore, there are 5794n(n - 1)(n - 2)(n - 3)/24
functions of cost 12.

This procedure does not work for cost = 16. We are only assured of five non-
vacuous variables which allows for many costs (i.e. 0, 2, 4, 8, 12, 16, 20, 24, 28, and
32).

Virtually all functions on four variables were run on a Pascal function decompo-
sition program similar to AFD version 2a. The results are shown in Table 6.1, where
all DFC values not listed had zero functions. Note that the number of functions with
costs zero through 12 matches exactly with the theoretical results. This makes us
think that the algorithm finds optimal decompositions on functions of four variables.

In summary, there are n + 2 functions of cost 0, n functions of cost 2, 10n(n - 1)/2
functions of cost 4, 218n(n - 1)(n - 2)/6 functions of cost 8, and 5794n(n - i)(n -

2)(n - 3)/24 functions of cost 12. Figure 6.1 is a graph of these relationships for
various n's.

We used the AFD program to extend the theoretical results on DFC histograms.
We generated 745 random functions on five variables and decomposed them with
versions 1, 4a, 2a and 3. Because of limited computer resources version 3 was run
only on the first 92. The combined results were: 711 functions had cost 32, 22 had
cost 28 and 12 had cost 24. Based on this, we would estimate that zero percent of
the functions on five variables have cost 0 through 20, 12/745 x 100 = 1.6 percent
have cost 24, 22/745 x 100 = 3.0 percent have cost 28, and 711/745 x 100 = 95.4
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Figure 6.1: Number of Functions versus DFO for n up to 24

percent have cost 32. However, we must also consider that better decompositions
m~.y exist for many of the functions than we were able to find. Version 3 found no
new decompositions beyond those found with versions 1 or 4a but did reduce the
cost of one decomposition from 28 to 24. Based on this fact, we are suspicious that
our estimated number of functions is inflated for a cost of 28. Figure 6.2 plots the
estimated frequencies for costs of 24, 28 and 32 along with the theoretical frequencies
developed earlier.

We generated 400 random functions on six variables; version 4a found no decom-
positions and version 1 found no decompositions in the first 100 of these. Therefore,
we can be 98 percent confident that the fraction of "decomposable" functions on six
variables is less than 1 percent. By "decomposable," we mean that the function has
DFC < 2".

We generated 50 random functions on each of 7, 8, 9, and 10 variables, none
of which decomposed. Version 4a was used for n = 7, 8, and 9 and version 2a for
n = 10. Therefore, we can be 92 percent confident that the fraction of decomposable
functions for each of these number of variables is less than five percent.

The number of functions with L(e(rf)) <_ 1 is less than or equal to 2' by the
information theoretic constraints (see Theorem A.17). This upper bound (i.e. 2')
is fairly consistent with the trends in the experimental data and is perhaps a good
estimate for the number of functions of cost less than or equal to 1.

Funtions on a very large number of variables (n > 16) will always decompose;
at least a little bit. This result is from Lupanov'58 134], see also Savage'76 [54,
pp.116-120]. The Lupanov representation breaks a function into components. It is
possible to realize these components with a cost savings if, instead of realizing the
components independently, we first compute all possible minority elements and then
use each minority element many times in computing the Lupanov components.
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Figure 6.2: Number of Functions versus DFC for n = 5

The Lupanov representation has a complexity that grows as 2"/n. Based on rough
calculations, the constants involved causes the Lupanov representation to be greater
than 2n for n < 16. Therefore, for the size of functions that we have experimented
with (i.e. n _ 10), this is not a factor. In terms of the general theory though, it
is important. As discussed in Chapter 3, PT 1 is concerned with realizing a single
function. We noted that when realizing multiple functions there would be some
economy in re-using certain computations. However, for PT 1, we did not want to
deal with this complication. Therefore, we defined the PT 1 problem to only involve
a single function. The Lupanov upper bound makes it clear that even when realizing
a single function, the fact that you generate multiple intermediate functions makes
re-use a factor. Its not a terribly big factor; that is 2n versus 2"/n, but a factor none
the less. Of course the Information Theoretic constraints (Appendix A) still apply;
therefore, if the cost measure included the cost of the interconnections then it is not
a factor at all. In a sense, the Lupanov representation gets the DFC below 2n by
making the interconnection complexity very large.

In summary, for the vast majority of functions on five to ten variables, DFC
is the same as the function's cardinality. Therefore, we expect randomly generated
functions to have DFC = 2" and when the DFC is less than 2n then there is something
special about that function. Of course we think that "something special" is that it is
patterned. In recognition of the Lupanov upper bound, this is not true for functions
with more than 16 variables. When dealing with large functions, it may be desirable
to reconsider our metric and possibly include interconnection costs.
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6.2.3 Functions with a Specific Number of Minority Ele-
ments

Some functions have a definite minority in terms of output type. That is, a function
may have 0 as its output for all but a small number of inputs. In this case we would
say that 1 is the minority output type. An element of a function with output of the
minority type is calied a "minority element." This section will investigate the cost
of functions with respect to their number of minority elements. Functions with a
relatively small fraction of minority elements are common in practice. For example,
the prime number acceptor only outputs a 1 for the relatively few numbers that are
prime and a target detection algorithm would only output a 1 on the extremely small
fraction of possible images that include targets.

There is a minimum cost for a function with a given number of non-vacuous
variables. In particular, if a function has n non-vacuous variables then the cost of the
function cannot be less than 4(n - 1). Therefore, if a function on n variables has i
vacuous variables the cost of this function is at least 4(n - i - 1).

Theorem 6.5 If F is the set of binary functions with n non-vacuous variables then
the greatest lower bound on the cost of f E F is 4(n - 1).

Proof:
There exists a function f in F with ni = 2 for i = 1,... , P where ni is the number
of input variables for component pi of the representation of f and P is the total
number of components in the representation. We are assured of f's existence since
for any representation with a pi with ni > 3 we could partition the variables of pi
into groups of size ni - 1 and 1 with cost 2"i- 1 + 22 which is less that 2 n for ni > 3.
The resulting function would be an element of F since the composition of functions
which are essentially dependent on all their inputs is a function that is essentially
dependent on all of its inputs. We can solve for P for such a representation since the
total number of variables input to the pi's is the original n input variables plus the P
variables generated by some pi minus the final output variable which is not an input.
That is,

P

zni=n+P-1
i=1

which reduces to P = n - 1 since all ni = 2. The cost of this representation is:
P n-1

Z21 1 = 2 = 4(n- 1).

i1 i=I

This is a greatest lower bound since there exist functions with this cost, e.g. x, + x2 +
... + x,, where + is an OR operation and the xi's are Boolean variables.
0

There is a relationship between the number of minority elements in a function
and the possible existence of vacuous variables. Intuitively, if a function has an odd
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number of minority elements then it is not possible for a partition matrix to have two
identical sets of columns and two identical sets of columns are possible for a function
with a vacuous variable. We state this as a theorem.

Theorem 6.6 Suppose F is the set of functions on n variables with exactly k minor-
ity elements, where k is an integer greater than zero. There exists f E F such that f
has i vacuous variables if and only if k has 2i as a factor.

Proof:

f has k minority elements and i vacuous variables. If there are no vacuous variables
then 20 is obviously a factor. Otherwise, choose a vacuous variable. The partition
matrix with respect to this variable has two identical columns. Of course the columns
contain the same number of minority elements and therefore the total function had an
even number of minority elements. If we now drop this vacuous variable and repeat
the argument for the remaining function we see that there is a factor of 2 in k for
each vacuous variable.

Let k = k2'. We can construct an f with i vacuous variables one vacuous variable at
a time. For the first vacuous variable, let f(... ,0, .. '.) = f(... ,1,...) but leave the
specific values undefined. Now consider f... ., 0,...) as the "function" and repeat the
procedure i times. This is possible since there are a multiple of 2' minority elements.
The final "function" can be defined arbitrarily as long as it has k' minority elements.
A function so constructed has i vacuous variables and k2' minority elements.
0

This result could be used as a search constraint in the decomposition process. For
example, if there are an odd number of minority elements then there is no point in
testing for vacuous variables.

We now have a connection between the number of minority elements and the
number of vacuous variables as well as between the number of vacuous variables and
the minimum cost.

Theorem 6.7 Let F be the set of binary functions on n variables with exactly k
minority elements. Let i be the largest i such that 2' is a factor of k. Then for all
f E F the cost of f is > 4(n - i' - 1) and there exists an f E F such that the cost of
f equals 4(n - i - 1). That is, the cost of functions in F has a greatest lower bound
of 4(n - i' - 1).

Proof:
This follows from Theorem 6.5 and Theorem 6.6.
0
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Figure, 6.3: DFO With Respect to Number of Minority Elements, n=4

This lower bound on cost could be used as a stopping condition in a search for
a best decomposition. That is, if the cost of the best decomposition so far is at the
lower bound then the search can be stopped.

We have an upper bound on the cost of a function in terms of the number of
minority elements. This upper bound is based on the fact that individual minority
elements can be generated with a product and then summed together.

Theorem 6.8 If f is a function on n variables with k minority elements then the
cost of f is less than or equal to 4(nk - 1).

To expand upon the theoretical bounds we generated a series of random functions
with a controlled number of minority elements and determined their cost with the
AFD program. We generated ave functions each for 4, 6, 7, 8 and 9' input variables for
each of the six different fractions of minority elements. On functions of five variables,
we generated an average of about 500 functions for all possible number of minority
elements (i.e. 0 - 15). The results of these experiments are plotted in Figures 6.3
through 6.7.

Table 6.2 lists the percentage of minority elements for a given fraction of cost.
Based on this we might expect that the average cost of functions with less than 10
percent minority elements to be less than 0.9[f] and the average cost of functions
with less than 5 percent minority elements to be less than 0.5[f].

6.2.4 Functions with a Specific Number of Don't Cares

A random total function was generated for each n from 4 to 10. These functions
were then "sampled" and decomposed. By sampling we mean that we took a subset

'Only four different nine variable fuctions were generated for each number of minority elements.
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Figure 6.5: DFC With Respect to Number of Minority Elements, n=6

n I minority element fraction at 0.5[fJ minority element fraction at 0.91f]
4 .06 .25
5 .03 .16
6 .05 .19
7 .06 .13
8 .07 .16

Table 6.2: Number of Minority Elements Required for a Given Cost
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of the total function and then decomposed this partial function. The subsets were
chosen randomly. In circuit design they often refer to the points not in a partial
function as "Don't Cares' meaning that the output can be anything. Therefore,
the size of the partial function is also called the number of "cares." The size of
the subsets were 2, 5, 7, 10, 12 and 15 for n = 4. For all other n the samples
sets contained 5 x 2n- 5 x i elements, where i = 1,2,...,6. This corresponds to the
following percentages: 15.6,31.3,46.9,62.5, 78.1 and 93.8. Figure 6.8 plots the results
of the AFD version 2a runs.

In order to assess the sensitivity of these results to the sample set, we repeated
the above experiment five times for a random function on seven variables. That is,
five different sample sets of each size were taken, but always from the same function.
These results are shown in Figure 6.9. Note that DPFC can never exceed the number
of cares. The DFC of a random function appears to increase linearly with the number
of cares. The DFC of the partial functions reach the DFC of the total functions when
the number of cares gets up to between 60 and 80 percent.

6.3 Non-randomly Generated Functions

In this section we go around with our new instrument and measure the pattern-ness
of many different kinds of functions. We are testing the generality of our measure
and exploring pattern-ness.

We identified several classes of functions that are small enough to be tested with
the AFD program. These classes include numerical functions and sequences, symbolic
functions, string manipulation functions, a graph theoretic function, images, and files.

Note that although we only report the DFC resulting from the AFD runs, when-
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Figure 6.9: DFC as a Function of the Number of Cares, n - 7

ever the DFC is low the AFD program is also yielding an algorithm.

6.3.1 Numerical Functions and Sequences

By "numerical functions" we mean the usual arithmetic operations (addition, subtrac-
tion, multiplication and division), square and cube roots, trigonometric and logarith-
mic functions, prime and Fibonacci number acceptors, the greatest common divisor
and the matrix determinant. The computation of numerical functions has a long his-
tory. The algorithms used to compute these functions have been hand-crafted over
the centuries. To underscore the significance of what AFD does on these problems,
try to imagine that we did not know how to compute addition and we were given
the task of designing an addition algorithm. We might get out our algorithm design
text, such as [31; but what technique would we use? Are we going to try to repre-
sent the problem with a graph? Can we apply Heap Sort? What about dynamic
programming? Where in this admittedly excellent text on algorithm design is there
a method that would result in a good algorithm for addition? Of course the point
is, algorithm design texts do not give methods for algorithm design, they give a tool
kit of hand-made algorithms to choose from. Another point is that there are many
problems, including some as simple as addition, that are not naturally constructed
from things in the tool kit.

In this section we apply PT to a table defining addition and it produces the
familiar digit-wise add and carry algorithm that we all learned in grade school. We
believe that it is very important that this algorithm was produced by a computer,
automatically, and the same computer program found the patterns in many other
kinds of functions.

Numerical functions are represented as binary functions by using the usual binary
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Output Bit n 2" DFC % DFC
1 8 256 4 1.6
2 8 256 12 4.7
3 8 256 20 7.8
4 8 256 28 10.9
5 8 256 28 10.9

Total 1280 92 7.2

Table 6.3: Addition.

equivalent of each input padded on the left with zeros to give the input the appropriate
length. Wb-In there are two input numbers, as in addition, the binary function
representation has as input the concatenation of the binary equivalents of the two
input numbers. When the output is a non-binary number, we represent the numerical
function by a binary function for each bit in the binary representation of the output.
Consider addition as an example. Define the numerical function addition to be the
sum of two numbers between 0 and 15. The output will be between 0 and 30. Each
input number must be represented by four bits. The output must be represented
by five bits. Therefore, we represent addition as five binary functions, each on eight
variables. Although these 5 functions are decomposed independently, we sometimes
refer to them as a single function. Numerical sequences are represented as "acceptors."
For example, the Fibonacci sequence is represented as a numerical function whose
output is 0 if the input is not in the Fibonacci sequence and whose output is 1 if
the input is in the sequence. Tables 6.3 through 6.12 show the results for numerical
functions.

Addition was represented by a binary function of the form

f/: {o,114 X× ,11 {o,1 } .

Output bit 1, the least significant, is simply an exclusive OR of the least significant
bits of the two inputs. The decomposition found for the more significant output bits
is the familiar binary adder in combinational form. Notice that the more significant
bits re-compute the less significant bits, so addition can be realized with a cost of
20 rather than 92. We have deliberately not tried to exploit this kind of savings
(see Section 3.4.9). However, this suggests an approach of first decomposing one of
multiple functions and then treating its output and intermediate states as inputs to a
second function. In general, the DFC of adding two m-bit numbers is 16m + 8. The
cost of only the most significant bit is 8m - 4.

Subtraction was represented by a binary function of the form

f: fo,) × X 0 14-4o, 1}

Output bit 5 is the sign bit and output bit 1 is the least significant of the 4 bits in
the binary output.
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Output Bit n 2n DFC % DFC
1 8 256 4 1.6
2 8 256 64 25.0
3 8 256 68 26.6
4 8 256 54 21.1
5 8 256 28 10.9

Total 1280 218 17.0

Table 6.4: Subtraction.

Output Bit n 2n DFC % DFC
1 4 16 4 25.0
2 4 16 12 75.0
3 4 16 12 75.0
4 4 16 12 75.0

Total 64 40 62.5
1 6 64 4 6.3
2 6 64 12 18.8
3 6 64 28 43.8
4 6 64 64 100.0
5 6 64 36 56.3
6 6 64 20 31.3

Total 384 164 42.7
1 8 256 4 1.6
2 8 256 12 4.7
3 8 256 28 10.9
4 8 256 112 43.8
5 8 256 256 100.0
6 8 256 256 100.0
7 8 256 168 65.6
8 8 256 56 21.9

Total 2048 892 43.6

Table 6.5: Multiplication.
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Output Bit n 2" DFC % DFC
1 8 256 168 65.6
2 8 256 72 28.1
3 8 256 24 9.4
4 8 256 16 6.2

Total 1024 280 27.3

Table 6.6: Modulus.

Output Bit n 2n DFC % DFC
1 8 256 124 48.4
2 8 256 134 52.3
3 8 256 92 35.9
4 8 256 28 10.9

Total 1024 378 36.9

Table 6.7: Remainder,

Multiplication was represented by binary functions of the form

f: {0,1}, x {0,1} -, {o,1}-.

We evaluated functions with n equal to 4, 6, and 8. The output bits are listed in
order of increasing significance. Note that for n = 8, output bits 5 and 6 did not
decompose. One possible cause for this is that you need the results of computing the
less significant bits before these bits are patterned. Another explanation might be that
multiplication has a significant "buy-in" cost. That is, some patterned functions do
not decompose until the number of variables gets above some threshold. The six-bit
multiplication had a lower percentage DFC than the eight-bit. This is in part due to
our using the better version 4a on six-bit multiplication. When six-bit multiplication
is run on version 2a (which is what we had to use on eight-bit multiplication), the
total DFC is 46.9 percent.

Modulus was represented by binary functions of the form

f: {0,1}' X {o,1}4 -f {0,1 18

where the output is the integer part of x, divided by X2 .
Remainder was represented by binary functions of the form

f: o, 1}' X f0, 11 -+ {0, 118

where the output is the integer part of the remainder from x1 divided by X2 .
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Output Bit n 2n -DFC % DFC
1 8 256 80 31.2
2 8 256 36 14.1
3 8 256 12 4.7
4 8 256 4 1.6

Total 1024 132 12.9

Table 6.8: Square Root.

Output Bit n 2" DFC % DFC
1 9 512 136 26.6
2 9 512 24 4.7
3 9 512 8 1.6

Total 1536 168 10.9

Table 6.9: Cube Root.

Square root was represented by a binary function of the form.

:,{O, 18 -, ,14 .

The output is the binary equivalent of the integer part of the square root of the input.
The cube root was represented by a binary function ofi he form

f: {0,}- {01}3.

The output is~the binary equivalent of the integei part of the cube root of the input.
The first quadrant of the sine function was represented by a binary function of

the form
f: {0,1}8 _ {0,1}.

An input of x degrees was encoded as the binary equivalent of -the integer part of
255/90 times x. The input varied from 0 to 90 degrees. The output is the binary
equivalent of the integer part of 255 sin x. The output bits are listed in order of
increasing significance. -

The'logarithm function was represented by a binary function of the form

f: .{0, 1}8 __ {0,1}3 .

The output is the integer part of the logarithm to the-base 2 of the input. The output
bits are listed in order of increasing significance.

The "greater than" function is of the form

f : {o,1}" x {oi} - {0,1},
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Output Bit n 2 n DFC % DFO
1 8 256 '256 100.0
2 8 256 256 100.0
3 8 256. 256 100.0
4 8 256 224 87.5
5 8 '256 176- 68.8
6 8 256 104 40.6
7, 8 256 54 21.1
8 8 256 24 9.4

Tot'al 2048 1350 65.9

Table 6.10- Sine.

~Output Bit n 2" DFC % DFO
1 8 256 24 9.4

2 8256 20 7.8 j
3 8__ 256 12 4.7

1____ 768 56 7.3]

Table 6.11: Logarithm.

Function nz 2" DFO % DFC
Greater Than 8 256, 28 10.9
Factor ial 5 32 28- 87.5

Table 6.12: Miscellaneous Numerical Functions.

'119



n 2n DFC %DFC
6 64 64 100.0
7 128 104 81.2
8 256 196 76.6
9 512 336 65.6

10 1024 600 58.6

Table 6.13: Primality Tests.

n 2n DFC % DFC
5 32 24 75.0
6 64 48 75.0
7 128 76 59.4
8 256 108 42.2
9 512 144 28.1

Table 6.14: Fibonacci Numbers.

where the output is 1 if the first 4 bit input is greater than the second 4 bit input
and 0 otherwise.

The "factorial" function is of the form

f : 101,1} 5 -- 0,1ill

where the output is 1 if and only if the input is some factorial (i.e. 1, 2, 6 or 24).
The prime number acceptors are functions of the form

f,: {0,1}"' -- {0,1},

where the output is 1 if the input is a prime number and 0 otherwise (zero and one
were considered prime). Runs were made with n ranging from 6 to 10. This is an
example where n must be large before the function begins to decompose.

The Fibonacci number acceptors are functions of the form

f : fo0,1}_ f 0,1},

where the output is 1 if the input is a Fibonacci number and 0 otherwise. Runs were
made with n ranging from 5 to 9.

One experiment concerned the patterns in deciding whether or not a binomial
coefficient is an odd number. About 100 years ago, E. Lucas discovered that a choose
b is odd if and only if every bit in b implies its corresponding bit in a. This is a
highly patterned computation according to Pattern Theory and the AFD program
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Function n 2n  DFC % DFC
Lucas Function 6 64 20 7.8
Lucas Function 8 256 28 10.9

Table 6.15: DFC of Lucas Functions.

Function 7n 2n  DFC % DFC
Binomial Coeff. 6 64 12 4.7
Binomial Coeff. 8 256 20 7.8

Table 6.16: DFC of Binomial Coefficient Based Functions.

rediscovered this pattern. Tables 6.15 and 6.16 summarize these results. The binomial
coefficient functions are of the form

f : {0,J.} m X {0,iy -, 10,1},

m is 3 or 4 and { if a choose b is odd
f(ab) 0 if a choose b is even

don't care if a choose b is undefined (i.e. b > a)

The Lucas functions are of the form

g : {0,1} m × {0,i}" -+ {0, 1,

m is 3 or 4.

b 1 if each bit in b implies its corresponding bit in a
g(a,b)- = 0 otherwise

Lucas's Theorem [12, p.2] says that g(a, b) - f(a, b) when f is defined. Note that
g has by definition a decomposition of minimum cost for no vacuous variables (i.e.
DFC(g) = 4(n - 1)).

The Greatest Common Divisor (GCD) problem is represented by a function of the
form

f : {0, 114 X {o, 1141 {o, '},

Since we are not interested in the GCD when either number is zero, 0000 represents
decimal 1, 0001 represents decimal 2, ... , 1111 represents decimal 16. Output bit 1
is the most significant.

The determinant function is represented by a function of the form

f : {0 -19_ {2,1}3.
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Output Bit n 2 n DFC % DFC
1 8 256 48 18.8
2 8 256 172 67.2
3 8 256 164 64.1
4 8 256 4 1.6

Total 1024 388 37.9

Table 6.17: DFC of Greatest Common Divisor Function.

Output Bit n 2n DFC % DFC
zero/non-zero 9 512 128 25.0

positive/negative 9 512 108 21.1
±1 or ±2 9 512 .34 6.6

Total 1536 270 17.6

Table 6.18: DFC of the Determinant Function.

The input is a 3 x 3 binary matrix. The first output bit indicates whether or not
the determinant is zero. The second output bit indicates whether or not a non-
zero determinant is positive or j egative. The third output bit indicates whether
the absolute value of a non-zero 6tterminant is 1 or 2. Note that the size of the
determinant function is log 5 2' = 1188.83 since there are only five possible outputs
(i.e. -2,-i,0,1,2).

In summary, about 76 numeric functions were run on the AFD program. All
decomposed except for 3 of the 18 bits associated with multiplication, 3 of the 8 sine
bits and the prime number acceptor on 6 variables. Note that when the same function
was done on different numbers of variables (such as multiplication, primality test and
the Fibonacci number acceptor), the percentage cost went down as the number of
variables went up. The binomial coefficient based functions were exceptions. Also
note that the number of bits that do not decompose for multiplication was increasing
with the number of variables.

6.3.2 Language Acceptors

We were encouraged by the ability of DFC to reflect the patterns in a wide variety of
numerical functions. In this section, we generate "languages" to see if the DFC of a
completely different kind of pattern is also low.

We did a series of experiments on a class of functions called "language acceptors."
An abstract language is simply a subset of a set of strings. A language acceptor is a
function which outputs 1 if the input string is in the language and outputs 0 if the
input string is not in the language. There is a one-to-one correspondence between
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total binary functions on strings and languages. An arbitrary language is not different
from a random function; therefore, we would not expect an arbitrary language to
correspond to a function that decomposes. We are interested in languages that can
be generated with a formally defined grammar. A grammar is a set of rules. Each rule
has a left part and a right part; both parts are strings. An element in a language is
generated by starting with a special starting symbol and then replacing symbols that
are the left part of some rule in the grammar with the right part of that same rule. If
there exists some sequence of rule applications that will yield a given string from the
starting symbol then that string is in the language. See [22] for a concise introduction
to formal languages. A context-free grammar is one in which the left parts of the
rules consist of a single symbol. In [22, pp.178-179] there are algorithms for accepting
languages defined by context-free grammars in cubic time. If a language is defined by
a context-free grammar then we would expect the language acceptor for that language
to be patterned. Therefore, whether or not language acceptors decompose is a test
of the generality of the DFC measure of pattern-ness.

To conduct a test of the DFC measure relative to language acceptance we gen-
erated two programs. One randomly generates a set of context-free syntactic rules,
i.e. a context-free grammar. The grammars used in this experiment were generated
and then edited. The minor editing was necessary to remove duplicate rules and
generally ensure that a non-trivial language resulted. The second program takes a
grammar as input and generates the corresponding language accepting function in
AFD input format. Although languages generally include strings of any length, we
defined the language acceptor function only for input strings of a fixed length (in
particular, lengths of 9 bits). This was necessary because the AFD program is de-
signed for functions defined on vectors (which are the same as fixed length strings).
Reference Appendix A for more on the relationship between functions on strings and
functions on vectors. A sample of the languages resulting from these software tools
is shown in Table 6.19.

The languages were then decomposed with version 2a of the AFD program. The
results of this experiment are in Table 6.20. In summary, 14 context-free language
acceptors were generated and decomposed. The highest cost was about 25 percent
and the average cost was less than 10 percent. This result supports the contention
that DFC measures the pattern-ness of syntactically patterned functions.

6.3.3 String Manipulation Functions

In this section we generate functions with yet another class of patterns. These func-
tions are most easily thought of as functions on binary strings. The "palindrome"
function outputs 1 if the input binary string is symmetric about its center and out-
puts 0 otherwise. The "majority gate" function outputs 1 if the binary input contains
more ones than zeros and outputs 0 otherwise. The "counting four ones" function
outputs a 1 if and only if the input binary string contains exactly four ones. The
"parity" function outputs 1 if and only if the input binary string has an odd number
of ones. The "XOR" is the exclusive OR function where the output is 1 unless the
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Language 13 Language 4 Language 2 Language 11
aaaaaaaab babbbbbba ababababa aaaaaaaaa
aaaaaabab babbbbbbb abababbab aaaaabbbb
aaaaabaab bbabbbbba abababbba aaaabbbba
aaaabaaab bbabbbbbb ababbabab aabaaabbb
aaaababab bbbabbbba ababbabba aababaabb
aaabaaaab bbbabbbbb ababbbaba aabababab
aaabaabab bbbbabbba ababbbbab aabababba
aaababaab bbbbabbbb ababbbbba aababbaaa
aabaaaaab bbbbbabba abbababab, aabbaaaaa
aabaaabab bbbbbabbb abbababba abaaaaaaa
aabaabaab bbbbbbaba abbabbaba abaaabbba
aababaaab bbbbbbabb abbabbbab ababaabba
aabababab bbbbbbbaa abbabbbba ababababa
baaaaaaab bbbbbbbab abbbababa abababbaa
baaaaabab bbbbbbbba abbbabbab ababbaaaa
baaaabaab bbbbbbbbb abbbabbba abbaaaaaa
baaabaaab abbbbabab baaaaaaaa
baaababab abbbbabba
baabaaaab abbbbbaba
baabaabab abbbbbbab
baababaab abbbbbbba
babaaaaab
babaaabab
babaabaab
bababaaab
babababab
bbbbbbbba __________________

Table 6.19: Sample Languages.
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Language n 2" DFC % DFC No. of Productions Non-terminals
1 9 512 28 5.5 5 1
2 9 512 48 9.4 6 2
3 9 512 32 6.3 7 2
4 9 512 52 10.2 8 2
5 9 512 0 0 8 2
6 9 512 4 0.8 9 2
7 9 512 32 6.3 6 3
8 9 512 20 3.9 10 3
9 9 512 32 6.3 10 3
10 9 512 116 22.7 11 3
11 9 512 124 24.2 12 3
12 9 512 28 5.5 11 4
13 9 512 64 12.5 15 5
14 9 512 72 14.1 16 5

Average 46.6 9.1

Table 6.20:- DFC of Language Acceptors.

Function n 2" DFC % DFC
Palindrome 8 256 28 10.9
Majority Gate 7 128 48 37.5
Majority Gate 9 512 96 18.8
Counting Four Ones 7 128 64 50.0
Parity 7 128 24 18.8
Parity 8 256 28 10.9
Parity 9 512 32 6.3
XOR 7 128 24 18.8

Table 6.21: Miscellaneous Sf r; Manipulation Fuiictions.

125



Output Bit n 2" DFC % DFC
1 8 256 28 10.9
2 8 256 60 23.4
3 8 256 68 26.6
4 8 256 68 26.6
5 8 256 68 26.6

6 8 256 68 26.6
7 8 256 60 23.4
8 8 256 28 10.9

Total 2048 448 21.9

Table 6.22: Sorting Eight 1-Bit Numbers.

Output Bit n 2" DFC % DFC
1 8 256 12 4.7
2 8 256 56 21.9
3 8 256 16 6.3
4 8 256 160 62.5
5 8 256 16 6.3
6 8 256 184 71.9
7 8 256 12 4.7
8 8 256 56 21.9

Total 2048 512 25.0

Table 6.23: DFC of Sorting Four 2-Bit Numbers.

input is all zeros or all ones. The results of the decomposition of these functions are
shown in Table 6.21.

We did two "sorting" experiments. One considers sorting eight 1-bit numbers
and the other considers sorting four 2-bit numbers. Note that when sorting one-bit
numbers, biti(x) = 1- bit 9 _i(255 - x). Also, for sorting four 2-bit numbers, the higher
order bits of the output (i.e. bits 1, 3, 5, 7) are independent of the low order bits of
the input (i.e. bits 2, 4, 6, 8). That is, inputs 2, 4, 6, and 8 are vacuous in bits 1, 3,
5, and 7.

In summary, six different string based functions were considered (palindromes,
majority gate, counting, parity, exclusive OR, and sorting). A total of 24 binary
functions derived from these were run on AFD version 2a. All 24 functions decom-
posed. This supports the contention that DFC reflects the patterns in string based
functions.
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Bit Arc
1 1,2
2 1,3
3 1,4
4 1,5
5 2,3
6 2,4
7 2,5
8 3,4
9 3,5
10 4,5

Table 6.24: Input Bits Represent Arcs

6.3.4 A Graph Theoretic Function

This experiment concerns the patterns in deciding whether or not a graph has a k-
clique. A graph has a k-clique if it has k nodes that are completely connected (i.e.
each of the k nodes has an arc to all the other nodes in the clique). The k-clique
problem is NP-complete [54, p.4]. Therefore we would not expect this function to be
highly patterned.

The functions used in this experiment are of the form f : {0, 1}1° -* {0, 1}. The
input is the representation of an undirected graph with five nodes. Each bit in the
input indicates whether or not a given arc is in the graph as in Table 6.24. For
example, there is an arc between nodes 1 and 2 if bit 1 of the input is 1. Therefore,
the 10 input bits represent a graph and the output of the k-clique function is 1 if the
graph has a k-clique and 0 otherwise. We will consider each of the k-clique functions
for k's of 1 through 5.

We cannot do the 1-clique problem with this set up since we do not allow for
arcs from a node to itself. However, this limitation does not affect the other k-clique
functions since such arcs do not change whether or not a graph has a k-clique (for
k > 1). That is, if we had defined g : {0, 1}" -- {0, 1} and bits 1-10 are defined as
in Table 6.24 and with bits 11-15 defined as in Table 6.25 then variables 11-15 would
be vacuous for k-clique functions with k > 1.

The 2-clique function has only one minority element (i.e. a graph has a 2-clique
unless it has no arcs), therefore has cost 4(n- 1) = 36. Similarly, the 5-clique function
has cost 36.

We attempted to decompose the 3 and 4-clique functions with the AFD program,
but did not find a decomposition as good as the Savage sum-of-products form (the
AFD runs had not finished after 3 days). The best known decompositions then are
as in Table 6.26.

The complete k-clique function (i.e. the input includes k and the graph) could be
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Bit Arc
11 i,1
12 2,2
13 3,3
14 4,4
15 5,5

Table 6.25: Additional Input Bits for Arcs to Self

k DFC Percentage DFC
1 0 0.0
2 36 3.5
3 116 11.3
4 116 11.3
5 36 3.5

Total 304 5.9

Table 6.26: DFC of the Various k-clique Functions on a Graph With 5 Nodes

computed from 1-clique, 2-clique, ... as follows. Say k is input as a 3-bit number; have
five circuits, one that is true only if k = 1, one that is true only if k = 2, etc. (called
a binary-to-positional transformation). The iLh of these circuits is then AND'ed with
the i-clique function. The result of all the AND's is then OR'ed together. The result
is the k-clique function. The realization of k-clique just described has the cost of the
individual i-clique functions (304), plus the cost of the five counters (5x8=40), plus
the cost of five AND's (5x4=20) and four OR's (4x4=16). Therefore, the total cost
of the k-clique function of the form f : {0, 1}' x {0, 1}O -. {0, 1} is 380. The size of
the function is 213, so as a percentage the DFC is 4.6 percent.

From [54, p.5], we see that the k-clique function on a graph with four nodes has the
form f : {0, 1}2 x {0, 1} -- {0., 1}. The 3-clique function on a graph with four nodes
has DFC = 44. As in the k-clique function on 5-node graphs, the k-clique function
on 4-node graphs could be computed with the above functions, four counters (cost
= 4 x 4 = 16), four AND's (cost = 4 x 4 = 16), and three OR's (cost = 3 x 4 = 12).
Therefore, the total cost of the k-clique function on a 4"-node graph is 128. The size
of the function is 2s , so the percentage DFC is 50 percent.

In summary, the DFC of the k-clique function on 4-node graphs (input size 8-bits)
is about 128 and on 5-node graphs (input size 13-bits) is about 380. Despite the fact
that the complexity of the k-clique function grows rapidly (i.e. NP) as the size of the
input increases, the complexity is low for a 5-node graph. It would be interesting to
evaluate the DFC of several NP-Complete problems for several input sizes each. We
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k DFC Percentage DFC
1 0 0.0
2 20 31.3
3 44 68.8
4 20 31.3

Total 84 32.8

Table 6.27: DFC of the Various k-clique Functions on a Graph With Four Nodes

Font Number Font Name Number of Characters
0 default 253
1 triplex 94
2 small 94
3 sans serif 95
4 Gothic 95

Table 6.28: Turbo Pascal V5.5 Font Sets

only have two data points on this single NP-Complete problem, but the growth in
complexity is much less than we expected. There are many long-standing unanswered
questions about the complexity of NP problems and decomposition may be an avenue
to some new insights. In any case, DFC reflects the patterns in yet another context.

6.3.5 Images as Functions

In the preceding sections we saw that DFC captures the essential complexity of many
kinds of functions. In this section, we consider the pattern-ness of images. Since DFC
measures the pattern-ness of binary functions, we need to represent an image as a
binary function. Suppose we want to assess the pattern-ness of a 16 pixel by 16 pixel
black and white image. We represent this image as a binary function of the form

f : {0, 1}n X {o, 1}m -4 {0, 1},

where n = 4 and m = 4. The first 4 bits of the input specify a column of the image,
the last 4 bits specify a row and the output is the color (0 for white and 1 for black)
of the pixel at that row a-Aid column.

This experiment uses a 16 by 16 pixel sampling of the characters generated by
Turbo Pascal V5.52 for images. There are 631 total characters in 5 fonts, distributed
as in Table 6.28. Each character was drawn on a VGA monitor With the maximum
font size that would allow all characters of a given font to fit within a 16 x 16 pixel

2Borland International.
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Font 0 Font 1 Font 2 Font 3 Font 4 All'Fonts'
'Number of Characters 253 94 94 95 95 631
Average DFC 44.0 111.3 78.6 96.0 141.9 81.7
Maximum DFC 64 224 160 256 256 256
Minimum DFC 0 24 20 12 24 0
Number with DFC-256 0 0 0 1 11 12

Table 6.29: Character Images DFC Statistics

square. The image was then read and converted into the Ada Function Decomposition
(AFD) input format. The results are listed in Table 6.29.

For comparison purposes, the images are listed in Figures 6.10 through 6.14 with
their character number and their DFC. The images start with character number 0 in
the upper left hand corner and then go across 16 to a row. The rows and columns
are numbered such that the number of a character can be found by summing its
row and column numbers. The numbers just to the right of each character is the
character's DFC. Characters 1-30 of font 3 and characters 21-30 of font 4 are the
same as character 31 in each of the fonts. Although these characters are printed in
'Figures 6.10 through 6.14, they were not run and are not included in the statistics
of Table 6.29. There is generally a one-to-one correspondence between dots in the
images and ones in.the output of the functions that were decomposed. However, there
are cases where some differences exist.

In summary, the average DFC for all the characters is 81.7 as compared to 256
for a random function. Only 12 of the 631 characters did not decompose (less than 2
percent). Font 0 was the most patterned and font 4 the least. These results support
the contention that DFC measures the pattern-ness of images.

6.3.6 Data as Functions

Data compression depends upon finding some pattern in the data, for example, that
there are long strings of blanks or that characters are repeated many times. A central
thesis of PT 1 has been that function decomposition is a way to recognize almost
any kind of pattern. As another test of this thesis we used the AFD program to
decompose some files. The results of the decomposition are then compared to the
compression achieved by two popular programs for the PC, PKZIP and PKARC'.

AFD is limited to running on functions of about 9 variables or 512 points. This
limits direct application of AFD to files of 64 bytes. We ran AFD version 4a on five
files:

* fgfile.pas - the first 64 characters of a pascal program.

3PKWare Inc. Glendale, WI. 1987.
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* -story.in, -a 64 character sentence.

9 command.com - the first 64 characters of an executable file.

,* xor7.cht - the-first 64 characters of a graphics file.

* parity8.fng - the first 64 characters of a numeric data file.

Only parity8.fng decomposed, to a cost of 220. The size of all these files increased,
typically to around 90 bytes when, PKARC'ed. Apparently, there is no interesting
compression activity for files that are this small.

In order to allow us to run larger files, we considered each bit of a byte to be a
different function. Now we can look at 512 byte files as 8 functions each on 9 variables.
We ran several files like this.

* cin.asc, 537 bytes, a text file containing the first 512 characters of Chapter 1.

# hawaii.asc, 524 bytes, a text file containing the first paragraph of an example
data text file from enableOA4 .

* data.asc, 519 bytes, a section of the numerical data from the FERD experiment.

* dbf.asc, 520 bytes, a section of the example data base file from enableOA.

* west.muz, 519 bytes, a section of a file of music data for Pianoman5 .

* auld.muz, 519 bytes, a section of a file of music data for Pianoman.

* mousea.ss, 516 bytes, a section from the first part of VGA image of a mouse.

* mouseb.ss, 516 bytes, a section from the middle of VGA image of a mouse.

* mousec.ss, 516 bytes, a section from the last part of VGA image of a mouse.

The results for each run are listed in Table 6.30 where the rows identified as 1, 2,
etc. are the DFC for output bits 1, 2, etc. of the file labeling the appropriate column.
The row labeled "Total" is the sum of the DFC's for all eight bits. The rows labeled
PKARC and PKZIP are the compressed file size in bits. These results are summarized
in Table 6.31, where L is the length of an encoding of the decomposition.

We also generated some functions with trivial decompositions to see what PKARC
and PKZIP would do with them.

e (file name: rand0l) A random string of ASCII O's and l's. The file had 514
bytes. Bits 1-7 had zero DFC and bit 8 did not decompose. Therefore, DFC =
512 or 12.5 percent, L = 646 or 15.8 percent, PKARC = 173 bytes or 33.7 per-
cent, PKZIP = 244 bytes or 47.4 percent.

'1Trademark of Enable Software Inc.
'Neil J. Rubenking, 1988.
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Bit cin hawaii data dbf west auld mousea mousec mouseb
1 0 0 0 0 36 92 236 512 512
2 512 512 0 512 42 164 512 512 512
3 148 180 0 228 92 104 368 512 512

4 512 512 512 512 76 116 512 320 512
5 512 512 316 512 0 0 348 512 512
6 512 512 276 120 68 124 512 512 512
7 512 512 416 288 40 80 512 512 512
'8 512 512 512 320 96 132 512 512 512

Total 3220 3252 2032 2492 450 812 3512 3904 4096
PKARC 3232 2336 1688 2336 1672 1664 2664 3056 2920
PKZIP 3872 2968 2344 2968 1688 1784 3328 3728 3592

Table 6.30: DFC and Data Compression Results for Typical Files

Typical Files: ARC% DFC% L% ZIP%
auld 40.1 19.8 88.1 43.0
west 40.3 11.0 88.1 40.7
data 40.7 49.6 64.0 56.5
dbf 51.2 60.8 88.1 71.3
mousea 64.5 85.7 100.0 80.6
mouseb 70.7 100.0 100.0 87.0
mousec 74.0 95.3 100.0 90.3
cin 75.2 78.6 87.7 91.1
hawaii 80.7 79.4 88.1 96.6
Average: 56.4 64.5 82.0 70.2

Table 6.31: Data Compression Summary for Typical Files
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Contrived files: ARC%: DFC%: L%: ZIP%:
zeros 8.0 0.0 3.7 30.5
spaces 8.7 6.8 27.8 47.3
zeroone 16.7 0.0 3.7 33.7
majgate 26.6 2.3 15.8 45.1
randOl 33.7 12.5 15.8 47.4
asciistr 94.4 0.0 3.7 85.5
Average: 31.4 3.6 11.8 48.3
All files Average: 48.4 40.1 58.3 63.1

Table 6.32: Data Compression Summary for Atypical Files

* (file name: majgate) A string of ASCII 0's and l's defining the majority gate
function. The file had 514 bytes. Bits 1-7 had zero DFC and bit 8 decomposed
to 96. Therefore, DFC = 96 or 2.3 percent, L = 646 or 15.8 percent, PKARC
= 136 bytes or 26.6 percent, PKZIP = 232 bytes or 45.1 percent.

9 (file name: zeros) A string of ASCII O's. The file had 514 bytes. All 8 bits had
zero DFC. Therefore, DFC = 0 or 0 percent, L = 152 or 3.7 percent, PKARC
= 42 bytes or 8.0 percent, PKZIP = 157 bytes or 30.5 percent.

* (file name: zeroone) A string of alternating ASCII 0's and l's. The file had
516 bytes. All 8 bits had zero DFC. Therefore, DFC = 0 or 0 percent, L =
152 or 3.7 percent, PKARC = 86 bytes or 16.7 percent, PKZIP = 174 bytes or
33.7 percent.

* (file name: spaces) A file with two lines, each line has two ASCII l's separated
by 254 spaces. The file had 516 bytes. Six output bits had zero DFC, the
other two had 4 minority elements so their cost is no more than 140. Therefore,
DFC = 280 or 6.8 percent, L = 1140 or 27.8 percent, PKARC = 45 bytes or
8.7 percent, PKZIP = 244 bytes or 47.3 percent.

* (file name: asciistr) A file with two lines, each line lists all ASCII characters in
order. The file had 517 bytes. All output bits had zero DFC. Therefore, DFC
= 0 or 0 percent, L = 152 or 3.7 percent, PKARC = 488 bytes or 94.4 percent,
PKZIP = 442 bytes or 85.5 percent.

These results are summarized in Table 6.32.
The ARC, ZIP and AFD data are not directly comparable for several reasons.

The AFD representation is "random access" while the ARC and ZIP files must be
decompressed as a complete file. The ARC and ZIP compression routines run many
times faster than AFD. DFC does not measure a complete representation (i.e. does
not measure the interconnection complexity) and AFD does not optimize L. Also,
for n = 9, as is the case for all these runs, L is bigger than 2" unless the function has
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vacuous variables. That is, L includes a n2 [A] term and for no vacuous variables [A] >
n. Therefore, L > n3 > 2" for n = 9. Therefore, we cannot expect decomposition
to be a realistic data compression approach for small n. However, despite that, the
data compression performance for AFD (as measured by L) is in the same ball-park
as ARC and ZIP. That is, ARC had an average compression factor of 0.48 on all
files, ZIP 0.63 and AFD 0.58. It is also interesting that there was a high degree of
correlation between pattern-ness as measured by DFC and the degree of compression
achieved by ARC and ZIP. For the typical files, the correlation coefficient between
DFC and ARC was 0.87 and between DFC and ZIP it was 0.94. Remember that
the ARC and ZIP compression programs were written by someone who had studied
the common kinds of files and had recognized some patterns in these files that allow
them to be compressed. ARC and ZIP therefore look for specific kinds of patterns
and those kinds of patterns were originally discovered by a person. AFD, on the other
hand, finds the patterns itself. The patterns it found in the files allowed compression
that was comparable to that of the hand-crafted methods of ARC and ZIP. That
there is little pattern-ness beyond that considered by ARC and ZIP is evident in the
high degree of correlation between DFC and the ARC and ZIP compression factors
for typical files. That there exist some kinds of patterns that ARC and ZIP do not
look for is evident in the file assciistr where the DFC is 0 yet ARC and ZIP had
compression factors between 0.85 and 0.95.

In summary, files were treated as functions and run on AFD. Not only does AFD
find patterns in yet another kind of function, it does so as well as programs hand-
crafted for this class of patterns. The generality of AFD (and the lack of generality in
the hand-crafted programs) is indicated by an example where the compression factor
for AFD is less than 5 percent of that of the hand-crafted pattern finders.

6.3.7 Summary

It is our contention that DFC measures the essential pattern-ness that is important in
computing. We have the AFD algorithm that estimates DFC (never underestimating
though). We took this algorithm and estimated the DFC of as many kinds of non-
random functions as we could imagine. This involved about 850 decompositions.
Table 6.33 is a summary of all the decompositions of the non-random functions. The
DFC column is an average when multiple runs are involved. Table 6.34 shows that
larger n tends to have greater decomposability. With the current AFD algorithm,
we are just able to decompose functions with sufficiently large n to have interesting
patterns; which makes these results all the more remarkable.

Recall that random functions do not decompose with high probability. In all 850
runo there were only about 20 functions that did not decompose. As you look over
Table 6.33 notice the correlation between DFC and the intuitive complexity of each
function. We believe that this is the most general quantitative measure of pattern-ness
ever proposed.
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Function n m m2n DFO % DFC Number of runs
XOR 7 1 128 24 18.8 t
count four ones 7 1 128 64 50.0 1
binomial coeff. 8 1 256 20 '.8 1
Lucas function 8 1 256 28 10.9 1
greater than 8 1 256 28 10.9 1
palindrome 8 1 256 28 10.9 1
images of chars 8 1 256 81.7 31.9 631
logarithm 8 3 768 56 7.3 3
square root 8 4 1024 132 12.9 4
GCD 8 4 1024 388 37.9 4
modulus 8 4 1024 280 27.3 4
remainder 8 4 1024 378 36.9 4
addition 8 5 1280 92 7.2 5
subtraction 8 5 1280 218 17.0 5
1 bit sorting 8 8 2048 488 21.9 §
2 bit sorting 8 8 '2048 512 25.0 8
multiplication 8 8 2048 892 43.6 8
sine 8 8 2048 1350 65.9 8
parity 9 1 512 32 6.3 1
language accept 9 1 512 46.6 9.1 14
majority gate 9 1 512 96 18.8 1
Fibonacci test 9 1 512 144 28.1 1
cube root 9 3 1536 168 10.9 3
determinant 9 3 1536 270 17.6 3
files 9 8 4096 1644.1 40.1 120
primality test 10 1 1024 600 58.6 1
k-clique 13 1 8192 380 4.6 5

Table 6.33: Decomposition Summary for Non-Randomly Generated Functions
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Function n m m2" DFC % DFC Number of runs
multiplication 4 4 64 40 62.5 4
multiplication 6 6 384 164 42.7 6
multiplication 8 8 2048 892 43.6 8
primality test 6 1 64 64 100.0 1
primality test 7 1 128 104 81.2 1
primality test 8 1 256 196 76.6 1
primality test 9 1 512 336 65.6 1
primality test 10 1 1024 600 58.6 1
Fibonacci test 5 1 32 24 75.0 1
Fibonacci test 6 1 64 48 75.0 1
Fibonacci test 7 1 128 76 59.4 1
Fibonacci test 8 1 256 108 42.2 1
Fibonacci test 9 1 512 144 28.1 1
binomial coeff. 6 1' 64 12 4.7 1
binomial coeff. 8 1 256 20 7.8 1
Lucas function 6 1 64 20 31.2 1
Lucas function 8 1 256 28 10.9 1
majority gate 7 1 128 48 37.5 1
majority gate 9 1 512 96 18.8 1
parity 7 1 128 24 18.8 1
parity 8 1 256 28 10.9 1
parity 9 1 512 32 6.3 1
4 node k-clique 8 1 256 128 50.0 4
5 node k-clique 13 1 8192 380 4.6 5
files 9 1 256 248.8 97.2 5
files 9 8 4096 1589.2 38.8 120

Table 6.34: Larger n Shows Greater Decomposability
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6.4 Patterns as Perceived by People

In this section we consider the relationship between complexity as measured by a func-
tion decomposition algorithm and complexity as perceived by people when functions
are represented as two-dimensional images.

We have hypothesized that the DFC measure captures the essence of pattern-ness
in general. DFC has established correlation with conventional measures such as time
complexity, program length and circuit complexity. Since people are, in some sense,
a computation system, we wonder: does this measure correlate with complexity as
perceived by people? The AFD program provides the DFC measure of complexity. To
get human assessments of the complexity of these functions, we turned the function
into something which can be easily perceived. There are a variety of possible ways of
doing this. An image can be created from a function as discussed in Section 6.3.5. A
similar method could be used to produce other experiences (e.g. sounds).

We generated a set of test functions, found the DFC complexity using the AFD
program, found the complexity as perceived by people and assessed the relationship
between these two measures. Thomas Abraham reports the results of this study in
[1]. In summary, this experiment found a correlation coefficient of 0.8 between DFC
and pattern-ness as ranked by people.

6.4.1 Effect of the Order of Variables on the Pattern-ness
of Images

At various points throughout the PT 1 study it has been useful to think of binary
functions as black and white images. This technique was used in the extrapolation
experiments, in the tests for DFC generality and in the pattern-ness/DFC correlation
study just discussed.

In order to get an image from a binary function one must choose which variables
specify rows and which specify columns. You must also decide the order among the
row variables and among the column variables. This experiment is concerned with the
effect of the chosen grouping of variables on the appearance of the images. Table 6.35
lists the images used in this experiment.

We used the Turbo Pascal character set (as in Section 6.3.5) as a source of func-
tions. A program was used to draw a specified function with a variety of variable
permutations. Figures 6.15 through 6.18 show a sequence of images resulting from
the program. Each figure has the character number, the font number, and the De-
composed Function Cardinality (DFC) listed at the bottom. At the top left of the
figure is the image as drawn by the Turbo Pascal procedure outtextxy. At top right
is the drawing of the function that was generated by "getting pixels" from the left
image. The top two images should always be the same. The order of the variables
for the top row's images can arbitrarily be labeled as 1, 2, 3, 4 for the columns and 5,
6, 7, 8 for the rows. From left to right, the second row of images are a permutation
of these variables as in Table 6.36. Permutation 1 is a swapping of the high and low
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Font No. Char No. DFC
0 177 4
0 197 20
0 15 36
0 1 40
0 10 44
0 65 64
2 48 80
2 51 104
2 65 120
3 65 160
3 31 256
1 65 184
4 65 256

Table 6.35: Character Images

+I +
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Figure 6.15: Variable Permutations for Characters 177 and 197 of Font 0

Char: I ron, a o orc: 40

Char 15 Font:O OFC:36

Figure 6.16: Variable Permutations for Characters 15 and 1 of Font 0
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Figure 6.17: Variable Permutations for Characters 10 of Font 0 and 48 of Font 2
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Figure 6.18: Variable Permutations for Characters 51 of Font 2 and 31 of Font 3

Permutation Column Variables Row Variables
Original 1 2 3 4 5 6 7 8

1 432 1 567 8
2 1 23 4 876 5
3 432 1 876 5
4 523 4 1 67 8
5 1 63 4 527 8
6 1 27 4 563 8
7 1 23 8 567 4
8 1 27 8 563 4
9 1 63 8 527 4

Table 6.36: Permutations of Variables
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order bits of the column variables; 2 is a swapping of the high and low order bits of
the row variables; 3 is a swapping of the high and low order bits of both the column
and row variables; 4 through 7 swap a column variable for a row variable; 8 swaps two
side-by-side column variables for two side-by-side row variables; 9 swaps every other
column variable for every other row variable. Note that all the font 0 characters have
at least two vacuous variables while none of the characters in the other fonts have
any vacuous variables.

This data shows that the apparent pattern-ness of a given function is highly de-
pendent upon the variable permutation. For example, character 51 of font 2 with
the original combination of variables appears to be highly patterned while all of the
images resulting from a random permutations of the variables do not appear to be
patterned. This points out the risk in trying to "see" the patterns in a function by
turning it into an image. There is at least one definite property, "connected-ness"
that the original images have that is lost in the random permutations. Al but two
of the original images (i.e. all but characters 1 and 177 of font 0) are made up of no
more than 3 "islands." The randomly permuted images are made up of many more
of these islands. We argue that the "real" abstract pattern-ness of all the images of
a particular function is the same and that the difference in apparent pattern-ness is
a result of our biological visual system.

6.5 Pattern-ness Relationships for Related Func-
tions

When we defined the PT 1 problem (Section 3.4.9) we chose to only consider functions
defined by tables. However, we eventually will consider functions defined in other
ways. This raises the question, what does the pattern-ness of one function imply
about the pattern-ness of a related function? We are especially interested in this
question when one function is used to define a second function. For example, we
might be asked to compute y = f (x) where x = y'. What does knowing how to
compute x from y tell us about computing y from x? We hope to study this question
in depth in PT 2; however, we have some initial results that are described in this
section.

6.5.1 Functions and Their Complements

Perhaps the most trivial kind of relationship is when one function is simply the
complement of a second function. If f(x) = g(not(x)) or not(g(x)) or not(g(not(x)))
then f and g have the same DFC (except when f or g is a projection function).
Not only is the DFC the same, so is the architecture of the decomposition (i.e. the
algorithm). Therefore, if we are asked to design an algorithm for f and f is defined
for us in the form of an algorithm for the complement of f then our job is very simple.
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6.5.2 Functions and Their Inverses

This section is concerned with the relationship between the complexity of a function
and the complexity of that function's inverse6 and summarizes [30].

One motivation for studying this problem comes from the fact that many com-
putational problems are originally specified in terms of the inverse of the function
which we want to realize. For example, there is the "classical inverse problem" of
computer vision. The transformation from a 3-D model of a space into a 2-D image
of that space from a particular perspective (Projective Geometry) is well understood
and of relatively low computational complexity. The computer vision problem is easy
to specify using Projective Geometry. However, the objective in computer vision is
to take a 2-D image and generate from that a 3-D model. Therefore, the problem is
specified using a function (Projective Geometry) which is the inverse of the function
that we wish to realize on a computer. A second example is the situation where we
want to find an x with a particular given property y. Typically, the properties of x
(say P(x)) are easy to compute and this is how the problem is specified. However,
the inverse of P is needed to find x with a given input property y.

The question then arises; if a function (f) is of low computational complexity
(which is generally the case when f is used in a problem specification) then should
we expect the inverse of f to have low computational complexity. In other words, if
a problem has a simple specification then does it necessarily have a simple computer
realization?

Our approach to studying this problem was to generate many functions and their
inverses and then compute their complexity. Since we are studying only true functions,
we required the functions of this study to be bijections. That is, both the function
and its inverse are true functions.

This experiment was done with functions of the form:

f: 0,1I}, - {0,1}"'.

There are actually four functions going each way and the "cost" in the tables are
the sum of the DFC's of the four functions. We decomposed about 34,000 function -
inverse pairs. Table 6.37 shows the relationship between functions with a given DFC
and the average DFC of those function's inverses. Figure 6.19 shows the average DFC
relationship between functions and their inverses.

There are function-inverse pairs that have substantially different DFC's, e.g. 36
versus 52 or 40 versus 56. However, they tended to be the same on average. In par-
ticular, 19.9 percent of the functions had higher cost than their inverses, 20.2 percent
had lower cost and 59.9 percent had the same cost. The experimental correlation
coefficient between the DFC of a function and its inverse was 0.90. We observed from
the detailed data that if one (or more) of the functions going one way was a projection
then the inverse functions would also include the same number of projections. This
was also true of complements of projections.

6 This experiment was performed by John Lan~enderfer.
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f- Cost
f Cost 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

34 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
36 0 0 0 0 0 1 0 0 0 3 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0 0 3 0 1 0 1 0 0 0 0 0 3 0 3
42 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
44 0 2 0 2 0 3 0 6 0 5 0 3 0 5 0 9
46 0 0 1 0 1 0 2 0 2' 0 0 0 0 0 0 0
48 0 0 0 2 0 4 0 41 0 20 0 32 0 74 0 60
50 0 0 0 b 1 0 4 0 39 0 0 0 0 0 0 0
52 0 0 0 1 0 9 0 28 0 93 0 124 0 229 0 306
54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 2 0 4 0 25 0 134 0 569 0 1057 0 2039
58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 13 0 57 0 248 0 1115 0 3180 0 5850
62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
64 0 0 0 0 0 5 0 55 0 309 0 2060 0 5907 0 25710

Table 6.37: Number of Functions and Inverses with a Given Cost Combination

avg DFC of f inverse
70-

50 - ' ,

30
32 37 42 47 52 57 62 67

DFO of I

Avg Cost

Figure 6.19: Relationship Between Functions of a Given DFC and the Average DFC
of Their Inverses
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6.6 Extrapolative Properties of Function Decom-
position

6.6.1 Introduction

It is possible to divide the algorithm design problem into the problem of defining what
function you want the algorithm to compute (the definition problem) and the prob-
lem of getting a computer to compute the desired function with the given computing
resources (see [50]). For the PT 1 project, we deliberately set aside the definition
problem to focus on the realization problem. However, as an aside we did some
experiments on one approach to the definition problem. This section describes the
results of these experiments. Our Ada Function Decomposition (AFD) program is set
up such that it will decompose partial functions. A partial function is a function with
some of the outputs undefined or, equivalently, there are inputs for which we don't
care what the computer outputs. It turns out that by recomposing a decomposed
partial function you end up with a function that is "less partial." Therefore, recom-
posing decomposed partial functions is an approach to the definition problem. The
exploration of this approach will be the main topic in the Pattern Theory 2 project.

How you approach the definition problem depends upon what you are given about
the problem. One of the most common forms for giving information about a function
is a set of samples. Sometimes you may also be given some information about how to
extrapolate these samples but not always. There are a many ways to extrapolate sam-
ples (Neural Nets, rule induction, fitting polynomials, nearest-neighbor, etc.); each
way is based upon some (often implicit) assumption about the form of the function.
How well a given approach works depends upon the validity of that assumption. The
traditional approaches to machine learning assume a relatively large amount about
the function and therefore have a relatively narrow range of successful applications.
Since the range of poisible solutions is small, these traditional approaches tend to
require only a few samples. One of the most neglected aspects of machine learning
research is that of specifying exactly what a particular approach is assuming about
the function. Our approach assumes that the desired function has low computational
complexity. The centxal thesis of Pattern Theory (PT) is that a function has structure
(i.e. is patterned) if and only if it has low computational complexity. Therefore, the
Function Extrapolation by Recoinposing Decompositions (FERD) approach to ma-
chine learning assumes that the desired function is structured, but does not require
a specific kind of structure. We have shown that, while it is highly unlikely that an
arbitrary function will be structured, functions of interest in computing tend to be
structured. The FERD approach contrasts the traditional approaches where they not
only assume that the desired function is structured, but that the function has some
specific structure (geometric, syntactic, etc.).

An important principle in science (the Principle of Parsimony or the idea of Oc-
cam's Razor) is that one should choose the simplest theory that is consistent with
the experimental results. FERD is basically using this same principle in its approach
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to machine learning. In regards to human learning, there is much debate about the
roles of nature (phylogeny) and nurture (ontogeny). In terms of machine learning,
the "nature" may be characterized as the set of assumptions made by the machine
learning system and the "nurture" as the sample set (c.f. Figure 2.1). Since FERD
assumes nothing about the specific structure of the function to be learned (only that
it is structured), knowledge learned by FERD has very little "nature" content. In the
trade-off between being able to learn lots of different kinds of things and being able
to learn quickly, FERD is unusual in that it sides with diversity.

6.6.2 FERD Experiments

A series of experiments were conducted to assess the performance of FERD. We took a
number of functions, sampled them, decomposed the sampled functions, recomposed
the decompositions, and compared the recomposed functions to the originals. The
"symmetric" function outputs one if and only if the input has exactly four l's in it.
The other functions are pretty well described by their names.

We varied the number of samples; but, for each number of samples, we always gen-
erated five randomly sampled versions of the original function. The sampled versions
of the function were then decomposed. The AFD output was then recomposed. The
recomposed functions were then compared to the original function. We computed the
average, maximum and minimum error for the five sampled versions of the original
function for each sample set size. If f is the original function and r the recomposed
function then error e, is defined as the

er= e(x)
XE{O,1}n

where e(x) =1 f(x) - r(x) I when r(x) is defined and e(x) = 1/2 when r(x) is
undefined. The results of these experiments are shown in Figures 6.20 through 6.30.

Each of these graphs has two vertical scales. The left scale is the number
of differences between the original function and the recomposed function. Average,
minimum and maximum errors are plotted relative to this scale. The recomposed
functions may still have some "don't cares" even after recomposition. The average
number of don't cares in the recomposed function is plotted relative to the left scale
as "Avg D-Cares." The curve labeled "Chance" is the average number of errors that
would result from randomly filling in the don't cares of the original sampled function.
One would hope that a machine learning system would do better than chance. The
right scale is the Decomposed Function Cardinality (DFC) of the sampled functions.
The average (labeled "P-Cost"), minimum and maximum DFC's are plotted relative
to this scale.

Note the cost-error relationship of these curves. There do not seem to be many
cases where we can get a large decrease in cost for a small increase in error. If this is
true in general then our specialization to zero error realizations (in Chapter 3) may
not be as great a loss of generality as we thought.
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Figure 6.31: Learning Examples for the Parity Function

A sample of the results are also shown in picture form for the parity function and
the letter "R" in Figures 6.31 and 6.32. Figure 6.33, showing FERD results for
"P" and "T", is the Pattern Theory logo. Figure 6.34 shows the error statistics for a
random function on each of 4 through 10 binary variables. Only one sampled version
of each original function for each sample set size was made for this graph.

The results of these experiments were very consistent. As the DFC of the original
function goes up, the number of samples required for a given error rate goes up.
That is, complex functions are harder to learn. This is demonstrated in Figure 6.35,
which shows the minimum number of samples required for less than 10 errors as a
function of DFC. For random functions, FERD did no better than chance. Also, the
error rate tended to go down in rough proportion to the increase in the DFC of the
learned function. Functions with a definite minority of minority elements (such as the
symmetric function, RND4ONES, and PRIMES 9) tended to have a plateau in their
error curves. A random selection of samples would contain few minority elements.
We would not expect to see this plateau if we had balanced the samples between
function elements with an output of 0 and those with an output of 1.
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6.6.3 FERD and Neural Net Comparisons

We repeated some of the above experiments using a neural net (NN) rather than
FERD.7 The neural net had three layers with n nodes in the first layer, 2n + 1 nodes
in the second layer and 1 node in the final layer. The weights for the input layer
were fixed and the weights for the other layers were trained using back-propagation
as defined in [10, pp.53-59]. These results are shown in Figures 6.36 through 6.39.
Measuring the performance of a neural net is not as black and white as in the FERD
approach. Neural nets have a number of user specified parameters and architectural
features that affect their performance. These parameters are used as a way for a
human to get more "nature" into the machine to get it started learning. Therefore, it
may well be possible to fine tune some neural net to get better performance than we

TThomas Gearhart performed most of these experiments.
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20 40 60 80 100 120 Total Total %
Function F N F N F N F N F N F N" F N F N
Symm 32 27 25 19 18 15 4 10 2 4 2 1 83 76 10.8 9.9
MajGate 37 46 26 26 12 11 0 6 0 3 0 0 75 92 9.8 12.0
Parity 64 63 0 46 0 31 0 18 0 11 0 15 64 184 8.3 24.0
XOR 4 23 0 1 0 1 0 0 0 0 0 0 4 25 0.5 3.3
Total 137 159 51 92 30 58 4 34 2 18 2 16 226 337 7.4 11.0

Table 6.38: FERD (F) and NN (N) Error Comparison

got here; but since FERD requires no fine tuning, we felt this was a fair comparison.
Table 6.38 compares the errors from the two approaches. For the Symmetric function
the neural net did slightly better than FERD (9.9 percent average error versus 10.8
percent); but on all other functions, the Neural Net did worse, sometimes much
worse. The lack of generality of the Neural Net approach is seen in its performance
on the parity function. Here the Neural Net did no better than chance while FERD
learned the function exactly with 30 (of 128 total pointb) samples. Over all functions
and sample set sizes, the NN had an average error rate of 11 percent compared to
FERD's 7.4 percent. Note that a random extrapolation of any function would result
in a composite average error rate of about 25 percent. FERD got the function exactly
right in 13 cases compared to 4 for the NN.

Another limitation of Neural Nets became apparent when we implemented a sec-
ond NN, this one had n nodes in the first layer, 10 nodes in the second layer, 5 nodes
in the third layer and 1 node in the final layer. The back-propagation implemen-
tation of this NN was taken from [53]. The learning curves for this NN are shown
in Figure 6.40 and Figure 6.41. The points at 0 and 128 samples do not represent
actual data. Figure 6.40 demonstrates that this NN worked well for a step function.
Notice that although the first NN performed well on the Majority Gate function, this
second NN showed no consistency. This points out that selecting an architecture for
the net is important. However, this selection is left to the designer with no theory to
say what architecture is appropriate for a given class of functions. This contrasts the
FERD approach, which "solves" for the architecture as a function of the data.

6.6.4 FERD Theory

We were surprised that the Neural Net did better than chance and even more surprised
that FERD did better than a Neural Net. Our best theoretical explanation for this is
based on the probability that samples have a certain degree of structure. Reference
[33, p.194] identifies Laplace and Kolmogorov as having recognized that regularity
consistent with a simple law probably is a result of that simple law.

Let F be the set of all binary functions on n variables. Rather than use the simple
DFC, our cost measure is program length as defined in Section 4.3. This cost is es-
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sentially DFC with something added to reflect the complexity of the interconnections
of the decomposition's components. There is some function (f) that we want to learn
and we have a set of samples from f. There are two subsets of F that are of special
interest. One subset (S) is the set of all the functions consistent with the samples.
The other is the set (C) of all functions with a cost less than or equal to the cost of
f. The function f is in both these subsets and FERD is such that it always produces
a learned function (g) that is also in both these subsets.' That is, f and g are always
consistent with the samples and will have a cost that does not exceed f's. Therefore,
the size of the intersection of these two sets tells us something about how far g can
be from f. In particular, when the intersection only has one member, g = f (i.e.
FERD gets it exactly right). We use [A] to denote the cardinality of a set A. Let us
summarize our notation:

* F: the set of all .functions of the form f: {0, 1}" - {0, 1} , [F] = 2(2n).

• f: some function in F that we want to learn.

* c: the cost of f.

* a: the number of samples that we are given from f.

e S: the set of functions from F that are consistent with the samples. [S] - 22"-s.

9 C: the set of functions from F that have cost less than or equal to c. [C] < 2c

since we can name all the elements in C with c bits (see Theorem A.8) .

9 g: the function produced by FERD from the samples of f.

The hypergeometric probability distribution [41, pp.175-176] is of interest here.
A random variable X has a hypergeometric distribution with parameters N, n and r
if ( XN -( r)

P(X = k) - ,k = O,1,2,...

Meyers'70 gives the following useful properties of the hypergeometric distribution.
Let p =r/N and q = 1- p:

* E(X) = np,

* V(X) = npq(N - n)/(N - 1),

* P(X= k)- ( ) p)k(l -p)- for large N.

'Figures 6.21 and 6.29 have points where the cost of an extrapolated function exceeds the original
function. This is a result of the non-optimal nature of the software used and should not happen in
principle.
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The last property indicates that the hypergeometric distribution is well approximated
by the binomial distribution when N is large. A binomial distribution with the above
parameters has expected value np and variance npq.

Given two subsets A and B of a universal set U, if A and B are randomly and
independently selected from U then the number of common elements has the hyper-
geometric distribution with parameters [U], [A] and [BI; that is, for X the size of
AnB,

P(X =k)= [B]- k ,= 0,1,2....

[B]
Now let p = [A]/[U] and q 1 - p:

9 E(X) = [BJp,

* V(X) = [B]pq([Uj - [B])/([U] - 1),

Returning now to our problem and our notation, if C and S are independently
and randomly selected subsets of F then the cardinality of C intersect S has a hy-
pergeometric distribution.' That is, for X = [S n C],

IS (F] - (I

P(X=k)= [C)-k ,k = 0,1,2,...

Now let p = [S]/[F] and q = 1 - p:

* E(X) = [C]p =< 2[2 (n-,/2(2")= 2 ,-

* V(X) = [C]pq([F] - [C])/([FJ- 1) L [C]pq <_ 20-(1 - 2-') for large IF] and
V(X) "' 2c- 3 for large S.

Therefore, when s > c we expect C and S to share only one function, namely f
(which in this case must equal g).

When 8 < c we would expect f and g to be in the same relatively small subset.
This means that there is some chance of g equalling f. However, we cannot explain
why, when g is not exactly f, g tends to by closer to f than chance. Apparently the
cost neighborhood of a function and the geometric neighborhood of a function are
related (i.e. they overlap by more than chance)., 0

9Mike Breen recognized the relationship between this problem and the hypergeometric
distribution.

"The parity function is an exception to this. That is, for the parity function, the error is worse
than chance until there are sufficient samples to extrapolate the function exactly. Also, the Neural
Net had trouble with the parity function.
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It seems that S is controlled by "geometric" distance while C is controlled by
cost differences. What is the relationship between cost and geometric distance and
how does this relate to FERD? We first develop an upper bound on cost distance
as a function of geometric distance. Second, we draw some conclusions about the
"topology" of the space of functions with respect to cost. Finally, we re-interpret
some earlier experimental results in a way that applies to this problem.

We can relate the geometric and cost distance between two functions by, in effect,
using the computation of one function to compute the other. That is, we compute the
more costly function by first computing the less costly function and then computing
the differences between the two functions. Define the geometric distance (d) between
two Boolean functions (f and g) on n variables as:

dg(f,g) = E f(x)-g(xI.
xEX

This is equivalent to the number of points in which f and g differ. Define the cost
distance (d,) between f and g as:

d,(f,g) =1 DFC(f) - DFC(g) 1,

where DFC(f) means the Decomposed Function Cardinality of f.

Theorem 6.9 If dg(f,g) < p then d,(f,g) < 4np.

Proof:
Assume that dg(f,g) < p. Suppose f is the less expensive of the two functions. We
can compute g by first computing f (with cost DFC(f)), computing the p minority
elements where f and g differ (with cost 4(n - 1) each, or a total of 4p(n - 1)) and
then summing f and the p minority elements together (with cost 4(k - 1), where
k = p + 1 is the number of variables to be summed, for a total cost of 4p). The DFC
of g therefore must not be greater than the cost of the above computation, which is
DFC(f) + 4p(n - 1) + 4p = DFC(f) + 4np. That is, DFC(g) <_ DFC(f) + 4np.
0

Theorem 6.10 If dg(f,g) 2" - p then d,(f,g) < 4np + 2.

Proof:
Note that d(f,g) >_ 2n - p implies dg(f, not(g)) <_ p, since if f and g disagree on all
but p points then f and not(g) agree on all but p points. We can compute not(g) as
above and then complement it with a cost of 2.
0

If neither f nor g have cost < 2 then Theorem 6.10 has the slightly stronger form
of Theorem 6.9: if dg(f,g) _ [f] - p then d,(f,g) < 4np, since the cost of a function
with cost more than 2 is the same as its complement.
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Theorem 6.9 tells us that functions within a local geometric neighborhood are
also within a local cost neighborhood. The converse of Theorem 6.9 is not true.
Theorem 6.10 points out a certain kind of symmetry in the cost of functions as you
go from one point in the dq space of functions to its opposite point. The relationship
between dg and d. is analogous to the temperature distribution on the earth. The
temperature everywhere inside this county is within a degree or two of the temperature
here. However, when you consider the places that have temperatures about the same
as here, you might have to include places as far away as Europe or Asia. We think that
the set of low cost functions form many small separated regions within the geometric
space of functions. We can think of the learning situation as one where S specifies
a fairly large connected geometric region and C specifies a bunch of small separate
geometric regions. The geometric regions formed by S are "sub-spaces." For example,
if F were 3-D then S might be a plane or a line. The intersection of S and C then
might typically be just a sub-space of one of these small pockets of low cost. FERD,
in effect, picks one of the lowest cost elements from S intersect C. Looking at the
learning curves, we see that as more and more samples are provided the minimum
cost function has higher and higher cost. Also, when the cost of the minimum cost
function gets up to the cost of f, f is almost always the function FERD selects. It
seems the only way there would be more than one function of minimum cost is if the
sub-space defined by S runs along a constant cost line (surface or whatever) rather
than crossing it. Apparently the odds of that happening are not great.

The expected size of S intersect C is 2'- '. This result depends upon the assump-
tion that S and C are randomly and independently selected from F. Let us examine
that assumption. Independence requires the distribution of functions with respect to
cost within S to be the same as within F as a whole (as in P(C I S) = P(C)). The
first part of this section showed that within a small dg neighborhood independence
does not hold. However, S is not small and its not really a neighborhood either. We
know that all the functions in S are the same on the sample set so their dg is no more
than [f] - s. However, in real world learning applications, . is very small compared to
[f]. That is, S is very large. For any function f, in S there exists a function f2, not is
S, such that dg(f 1,f 2) = 1; that is, they differ only on some point in the sample set.
That is, S is not what we would think of as a neighborhood. Therefore, Theorem 6.9
does not pieclude independence between C and S for realistic situations.

There is some evidence suggesting that S and C are sufficien, 'y independent. This
evidence comes from the minority element experiments (Sectie" 6.2.3). We studied
the relationship between the number of minority elements in a function and the
function's DFC. It appears that if the number of minority elements is greater than
about 20 percent of the size of f then the cost distribution is random (at least the
average DFC is about the same as a random distribution). The number of minority
elements in a function is the same as its d. from a constant function. Also, since the
DFC of a constant function is zero, the DFC of a function is the same as its d, from a
constant function. Therefore, the DFC versus number-of-minority elements data can
be thought of as d. versus d, data relative to a constant function. If f is a constant
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function and s is less than 60 percent of [f] then S looks pretty much like the set of
random functions with greater than 20 percent minority elements. Therefore, if a is
less than 60 percent of [f], which it almost always will be, then the cost distribution
on S is pretty much random. This means that S and C are reasonably independent
under the expected conditions. Intuitively, you" would think that you would have
to get further from a constant function than any other function before things look
random. Therefore, this conclusion that S has a random cost distribution relative to
constant functions is even more likely to be true for other functions.

6.6.5 Summary

In summary, FERD is an approach to function extrapolation that chooses the least
computationally complex function that is consistent with the samples. In effect,
FERD chooses a function from the intersection of the set of low cost functions (C)
and the set of functions consistent with the samples (S). Under an assumption of
independence of C and S, the expected value of [C n S] is 2C-". We see some evidence
that this assumption may not be too bad in practice. Anecdotal comparisons of FERD
and Neural Nets suggest that FERD has considerable potential as an extrapolation
method. PT 2 will focus on FERD.

6.7 Summary

This chapter reports on the results of looking at the world from a Pattern Theory
perspective. We found that randomly generated functions have high DFO and that
a very wide range of patterned functions (numeric, symbolic, string, graphic, images
and files) have low DFC. There is high correlation between pattern-ness as measured
by DFC and as perceived by people. There is also high correlation between DFO
and the compression factor for files. These results support the contention that DFC
is a measure of the essential pattern-ness of a function. We also found the function
decomposition has remarkably general extrapolative properties. This further supports
the idea of a fundamental importance of decomposition.
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Chapter 7

Conclusions and
Recommendations

The theory of computing, as taught in most universities, fails the engineer in sev-
eral ways. First, it makes much ado over something that is practically trivial, i.e.
that there exists infinite functions that cannot be computed with finite machines
(Appendix A). Second, the treatment of complexity results in a statement that is
practically not acceptable; i.e. that all finite functions have the same complexity (O(1)
time complexity) (Section 4.4). Finally, and most importantly, the theory does not
support design.

This report introduces a computing paradigm that we hope will support the en-
gineering requirements. Note that .most of its elements (the decomposition condition
[4], the relationship between combinational and time complexity [64], the theor: of
program length [12]) are known in the computing theory community, but lack the
deserved emphasis. If this report offers anything new to computing theory it is the
idea of Decomposed Function Cardinality (DFC) as a general measure of essential
computational complexity. DFC correlates very well with the intuitive expectations
for a general measure of pattern-ness. We ran the AFD program on a wide variety
of patterned functions. Recall that randomly generated functions do not decompose
with high probability. Therefore, it is quite remarkable that of the roughly 850 func-
tions that we did not generate randomly, only about 20 did not decompose. We feel
that the generality of DFC as a measure of pattern-ness has been well demonstrated.

We can also start to see the potential for practical benefits from Pattern Theory.
We have been working with what might be called "toy" problems (i.e. binary functions
on no more than 10 or so variables). However, we believe that we should expect to be
able to do algorithm design on toy problems before more general problems. Note that
this is opposite from the approach taken in most machine learning paradigms. The
common view in machine learning is that we solve the easy problems by hand and
when we get to problems that we cannot solve by hand such as the character recogni-
tion (cannot solve the definition problem) or the traveling salesman problem (cannot
solve the realization problem) then we try to get a machine to solve it. We think that
we should be able to machine learn (or machine design algorithms for) easy problems
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long before we can machine learn the hard ones. Each time the AFD program found
that a function had a low DFCf (which it did some 830 times), it also found an al-
gorithm for that function. Therefore, although we were limited to toy problems, we
have demonstrated machine designed algorithms in a very general setting. From a
machine learning perspective, FERD performed as well as a Neural Net on functions
well suited to Neural Nets and considerably outperformed the Neural Net on other
functions. Also, unlike most traditional machine learning paradigms, we can say ex-
actly what property a function must have to be amenable to FERD extrapolation.
That property is low computational complexity in the sense of DFC. Recall that DFC
is a strikingly general sense of complexity and we begin to appreciate the significance
of FERD. Similarly, from a data compression perspective, function decomposition
performed comparably to hand-crafted compression algorithms on typical files and
considerably outperformed them on atypical files. Therefore, we feel that Pattern
Theory represents a solid foundation for an engineering theory of computing.

The results of PT 1 clearly support the need for further exploration and develop-
ment of Pattern Theory. Although PT 1 dealt with toy problems, we went from a
general statement of the real problems to the PT 1 problem in a series of deliberate
partitions and simplifying assumptions. Therefore, our recommendations for future
developments of Pattern Theory are simply to revisit each decision in defining the
PT 1 problem and consider the implications of not making that decision.
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Chapter 8

Summary

Algorithm technologies are very important to the Avionics Directorate because they
offer a cost-effective means to realize adaptive and fault tolerant avionics capabilities.
There is an un-met need for a theory of algorithm design. We only have to consider
the power of Estimation Theory or Control Theory to realize the importance of an
engineering theory. This report proposes and discusses "Pattern Theory" as a basis
for an engineering theory of algorithm design.

Pattern Theory (PT) begins with a very general statement of the algorithm design
problem. This general problem covers virtually every other discipline that results in
a computational system, including Neural Networks (NN) and model-based vision.
Deliberate specializations to this general problem are made to arrive at the problem
treated in this report (the PT 1 problem). It is important (and unusual) to state
up-front how a specialized approach relates to the general problem.

The problem of finding a pattern in a function is the essence of algorithm design.
The key to PT is its measure of pattern-ness: Decomposed Function Cardinality
(DFC). The thesis is that low DFC indicates pattern-ness. This measure is uniquely
general in reflecting the low complexity that is associated with patterns. The proper-
ties of DFC are defined and developed with mathematical rigor. The principal result
of PT 1 is a demonstration of the generality with which 1)FC measures pattern-ness.

The generality of DFC is suppcrted theoretically by 57 proven theorems. DFC
has the property that if a function is computationally non-complex relative to time
complexity or circuit complexity then it is necessarily non-complex with respect to
DFC, while the converse is not necessarily true. The previous statement is not true
relative to program length since one can always assign an arbitrarily short program
to any function. However, DFC has the property that its average is no more than
a single bit greater than the average program length and, when decompositions are
encoded as programs, the program length caanot be large without DFC also being
large. By rigorously relating DFC to time complexity, program length and circuit
complexity it can be assured that the class of patterns defined by DFO includes the
classes of patterns that would be defined by these conventional measures. In doing
this, new results were also developed in the theory of program length (Appendix A).

PT 1 explored function decomposition algorithms as a means to find DFO pat-
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terns. We developed a general test (the Basic Decomposition Condition), based on
DFC, for whether or not a function will decompose for a given partition of its v4ri-
ables. This test was then used in algorithms (collectively known as the Ada Function
Decomposition (AFD) algorithms) with a variety of heuristics for limiting the depth
of the search through iterative decompositions. AFD produces a decomposition (i.e.
an algorithm in combinational form) and the DFC of a function. We did not find
the hoped for threshold where additional searching had no payoff. However, we did
find that the most restrictive search method came very close to performing as well as
the least restrictive search method, despite the several orders of magnitude greater
run-time of the less restricted search. There was especially little benefit in the larger
search when the function being decomposed was highly patterned.

The generality of DFC was also supported experimentally. Over 800 non-randomly
generated functions were tested including many kinds of functions (numeric, symbolic,
string based, graph based, images and files). Roughly 98 percent of the non-randomly
generated functions had low DFC (versus less than 1 perent for random functions).
The 2 percent that did not decompose were the more complex of the non-randomly
generated functions rather than some class of low complexity that AFD could not
deal with. It is important to note that when AFD says the DFC is low, which it did
some 800 times, it also provides an algorithm. AFD found the classical algorithms
for a number of functions.

Some applications demonstrate the importance of DFC's generality. The correla-
tion coefficient between DFC and a ranking of patterns by people was 0.8. In a data
compression application on typical files, the correlation coefficient between DFC and
the compression factor of two commercial data compression programs was about 0.9.
However, on an atypical file, AFD had the much better compression factor of 0.04
versus 0.86 and 0.94 for the commercial programs. In a machine learning applica-
tion, AFD did as well as a NN on problems well suited to NN's. However, on another
problem, AFD learned a 128 point function from 30 samples whereas the NN required
all 128 points. These applications demonstrate that traditional paradigms look for a
particular kind of pattern; when they find that pattern they, do well and when they
don't they do poorly. PT is unique in that it does not look for a particular
kind of pattern, it looks for patterns in general.

PT is a pervasive technology and, at maturity, may revolutionize the approach to
many computational problems. Potential areas for early application of PT have been
identified, such as algorithm development for Non-Cooperative Target Identification.
PT has also shown promise in machine learning and data compression problems. Al-
though PT 1 has laid the foundation and even identified potential early applications,
there are many unsolved problems. PT 2 will begin to address the issues that limit
the application of decomposition to small problems.
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Appendix A

Program Length and the
Combinatorial Implications for
Computing

A.1 Mathematical Preliminaries

A.1.1 Basic Definitions

A partial function f : X -+ Y is a set of ordered pairs from X x Y, where there
is at most one y E Y associated by f with any x E X. That is, (x, y) E f and
(X,y') E f implies that y = y'. A total function is a partial function with the
additional property that f is defined on all of X. That is, for all x E X, there exists a
y E Y such that (X,y) E f. We will also use the word "mapping" for a function. The
set X is called the domain of f. The set Y is called the codomain of f. The first
element of all the pairs in f form a set called the base (this is not standard). The
base of f is a subset of the domain of f. If f is total then the base of f equals the
domain of f. The second element of all the pairs of f form a set called the range.
The range is a subset of the codomain. The image of an element x in the domain
of f is the corresponding element y = f(x) in the range of f. When the range of a
mapping equals the codomain "of the mapping, the mapping is said to be surjective
or "onto." Number theoretic functions are functions of the form f : N" -4 N,
where N is the set of natural numbers.

The cardinality of a set A, denoted [A], is the number of elements in the set A if
A is a finite set. The cardinality of an infinite set is determined by which standard set
it corresponds to in a one-to-one manner. The cardinals associated with infinite sets
are called transfinite cardinals. Since a function f is also a set, [f] is well-defined
and indicates the size of a function. Let c indicate the cardinality of the continuum
(i.e. the real numbers) and Ro indicate the cardinality of a countably infinite set.
We know that n ° equals c for any finite n greater than one [20, p.155 Equation 2].
In general, a finite number to the power of a transfinite cardinal is the next larger
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cardinal. We have a particular interest in the cardinality of sets involving the Natural
numbers (N). All elements of N are finite. However, N is unbounded. That is, there
does not exists a b E N such that n < b for all n E N. Therefore, N has cardinality
R, and a function with domain N, also has cardinality R. . The set of all possible
functions with domain N has cardinality c [59, p.12]. The relationship "<" can be
interpreted in a natural way on N and on transfinite numbers; i.e. n < R" < c for all
n E N. That is, the elements of N have their usual order, the transfinite cardinals
have their usual order and all transfinite cardinals are greater than all finite cardinals.
The relationship "=" also has a natural interpretation, so "<" can be used as well.

Let E be a set of symbols, not necessarily of finite cardinality. Let Q be N or
a subset of N of the form {n E N I n < T} for some T E N. A string on E is a
mapping from Q into F for some Q. Define E* as the set of all possible strings on E.
For x, a string in F*, we denote the length of x by s(x). We have not adopted the
traditional finite limitation on [B] and s(x). A language over E is a subset of E*

Let X 1, X2,... , X,, be arbitrary sets. An element of a product of sets (e.g. X, x
X 2 x ... x Xn) is a vector. A vector is also a string with alphabet E = X, U X2 U
... U Xn. Therefore, we designate the length of a vector s(x) as its length as a string.
For a vector in X, x X 2 x ... x X, , s(x) = n.

A.1.2 Combinatorics
Let us review some basic combinatorics. We are especially interested in the cardinality
of the set of all vectors of a given length, the set of all strings no longer than a given
length, and the set of all functions on a given domain. The following theorem gives
the cardinality of a set of vectors.

Theorem A.1 If V is the set of all vectors of length s(v) = n, that is V =

then there are [rja(v) vectors in V, i.e. (V] =-

Proof:
There can be any one of [E] symbols in the first position. Then for each symbol in
the first position, there can be any one of [E] symbols in the second position. Thus,
the number of combinations for a two-dimensional vector is [E][E] = [] 2. Similarly,
for each combination of the first two symbols there can be any one of [E] symbols in
the third position. Thus, the number of combinations for a three-dimensional vector
is [E]2[] = [E]3. This argument can be continued to find that there are [E]' (' ) com-
binations of symbols in an s(v)-dimensional vector.
0

We now develop the cardinality of a set of strings on an alphabet E of [E] letters.

Theorem A.2 If L is the set of strings on E whose lengths are less than or equal to

some threshold s(l') then L] = -IEJ-1
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Proof:
If L is a subset of E*. Let I' be a string in L of the maximum allowed length. There
are strings of length 0,1, 2,..., s(l'). For each string of length i there are [EJ] different
strings (as with vectors). Therefore, there are a total of

8(1')

i=0

strings in L. Thus,

[ 8(' =_ ([8 ] - ) 1 ,)(o [) s(')+ [Eli ] _ ()[
(=o - 1 = [J]-1

i=Op

'1i + [_]d(1+i []O + = ,[ F]' ¢p')+l. 1

The expression for the number of vectors is simpler than the expression for the
number of strings, yet there is not much difference between the two.

Theorem A.3 For finite s(l') and s(l') = s(v), we have [V] < [L] < 2[V].

Proof:
The first inequality follows from V being a proper subset of L. The second inequality
can be developed as follows:

,+> []8()+1 _1 = [E]][J8() - 1 > 2[E]'(") - 1,

assuming [E] > 2. Thus,

[E]1 + 1 > 2[]1(") - 1,
[]]) + 1 - 2[]1) >-I
2]1(!+ 1 - 2[8 1( ') > [~]81')+1 - 1,

2[F]1(*)([8 ] - 1) > []s(V)+1 _ 1
2[]s4v) > (]],e+ )(1l )

Finally, since
[IV] = []()= ](")

and

we have 2[V] > [L].
0
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Also, for transfinite s(t'), we have [L] = [V]; i.e. the addition, subtraction or
multiplication of a finite number with a transfinite cardinal yields the same transfinite
cardinal. Therefore, for finite or transfinite s(l'), [L] and [V] are very similar. Let F
be the set of all total functions of the form f : X - Y, where X and Y are arbitrary
sets. A set of strings satisfies the prefix condition if no string in the set contains
another string from the set as its first letters.

Theorem A.4 The largest number of different strings of length < I and satisfyjing
the prefiz condition is the number of vectors of length 1.

Proof:
Any string of length < I eliminates all longer strings with that beginning from the set
of strings satisfying the prefix condition. There is always more than one string elimi-
nated by a string of length < 1. A string of length I only eliminates itself. Therefore,
the largest set of strings satisfying the prefix condition is the set of stings of length
exactly 1.
0

The following theorem gives the cardinality of a function.

Theorem A.5 If F is the set of all total functions of the form f : X -+ Y then
[F]- [y-I'l.

Proof:
Each function f E F can be thought of as a vector made up of the sequence of images
under f for all x E X. Thus, the cardinality of F is the cardinality of a set of vectors
of length [X] over the symbol set Y.
0

We might have assumed that F is the set of all partial (rather than total) functions
on a given domain. However, we can model any partial function g : X --* Y with a
total function f : X -4 (Y U {J'}), where y is some symbol not in Y. That is, let
f(x) = g(xz) for any x in the base of g and let f(m) = y' for all other x's. Therefore,
the set of all partial functions into Y has a one-to-one correspondence with the set of
all total functions into Y U {y'}. The number of partial functions into Y equals the
number of total functions into Y U {y'}. The number of total functions into Y U {y'}
is ([Y] + 1)tX1. The number of partial functions into Y is then ([Y] + 1)(Mi. Therefore,
whether we use F as the set of all total functions or as the set of all partial functions,
there is little difference in the essential combinatorics.
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A.2 Program Length Constraints for Computa-
tion

A.2.1 Introduction

In most texts on Computability Theory you will find a statement such as: there exist
number theoretic functions (i.e. functions on finite numbers) which cannot be com-
puted with any finite program. The proof of this statement depends only upon some
combinatorial arguments. While this is clearly a most impressive consequence of these
combinatorial considerations, the consequences are much broader than indicated by
that one statement. The objective of this appendix is to recognize and precisely state
the general computing limitations implied by combinatorial considerations. As com-
pared with the traditional statement of noncomputability, the following statements
are stronger and more general, yet equally easy to derive.

Now it is reasonable to ask whether or not there exists a machine for a given P
and F. We kno.w from above that, regardless of the particular association desired
between P and F, these simple combinatorial constraints must be satisfied. If they
are not satisfied then we say that no machine exists which can be programmed from
P to compute any element of F. In particular, if we consider P = E, then [P] is Ro.
If we also consider F to be the set of all functions on the set of all finite strings then,
although s(x) is finite, [X] (or [f]) is K and [F] is c. Therefore, [P] is not greater
than or equal to [F] and, consequently, there does not exist a machine which can be
programmed from P to compute any element of F. This is the traditional statement
of noncomputability.

We feel that the generalized developments of this appendix allow a more intuitive
introduction to computability as well as the more general implications of program
length constraints. That is, first develop the max-min program length constraints.
These constraints are intuitive and easy to develop from basic combinatorial con-
siderations. With an understanding of these constraints, we can easily derive the
traditional noncomputability result as well as many other more general or stronger
results. The existence of noncomputable functions is uncoupled from the traditional
sources of confusion such as the relationship between transfinite cardinals and the rich
(but irrelevant) structure of Turing machines and number theoretic functions. There-
fore, although this alternative introduction to noncomputability is more general and
stronger, it can also be more intuitive. We can then develop average-minimum pro-
gram length constraints by applying Information Theoretic concepts to this paradigm.
There are several practically important applications of these program length con-
straints.
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Accepting a program. Realizing a function.

Figure A.1: A Machine's Interfaces

A.2.2 Programmable Machines

Definition of a Programmable Machine

The objective of this appendix is to generalize the development of the combinatorial
implications on computing. One area of extended generality is our model of a ma-
chine. This section will define our machine model. Many computational systems are
well modeled (in terms of the combinatorics of interest) by this machine, including
traditional programmable systems, analog computing, logic circuit design and ma-
chine learning. Therefore, the theoretical developments with respect to this model
have far ranging applications; yet this model is adequate for the many results based
on combinatorial considerations of. the functions and programs involved. To say that
a very general M exists does not tell us much, but, we will be specifying conditions
under which M does not exist. Therefore, the generality of the machine model makes
the non-existence results stronger.

A programmable machine (PM) consists of a programming language P, a set
of functions F, and a surjective mapping M : P -- F, i.e. PM= {P, F, M}. When
we say "machine" we mean a closed physical system (i.e. a black box) which may
include people. When we say "PM" we mean a model of the physical machine. A
program is a string from an alphabet Ep which satisfies the prefix condition. The
prefix condition says that a program p cannot contain any other program as its first
i characters, i = 1,2,... ,s(p). This condition is necessary and sufficient to make it
possible for a machine to be able to decide, after accepting each program character,
whether or not a complete program has been accepted. Therefore, P is a subset of E;,
and is formally a language. Of course P could be a traditional programming language
(e.g. Fortran); however, it can also be a circuit specification, data samples, etc. The
length of a program (p) is its length as a string, i.e. s(p).

A machine interfaces with the rest of the world through three avenues (Figure A.1).
A machine has the ability to accept a program and realize a function. A machine
realizes a function if when presented with any element from the function's domain,
the machine automatically (i.e. without any help from outside the machine) produces
the corresponding element from the function's range. The idea that functions are
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Channel

Figure A.2: "Programs" in a Communications Context

an especially important model of computational processes is well developed in the
Computing Theory literature (e.g. [50, 59]), so we do not redevelop it here. However,
we point out that nearly all computational systems realize a function. A machine has
accepted a program if it then realizes the function associated with that program.

We can think of a "program" as a message sent to a machine instructing it to
realize a particular function (Figure A.2). The machine is capable of realizing any
one of the functions in F when given the appropriate message from P. A program is
everything necessary to specify a particular function with respect to a machine capa-
ble of realizing a variety of functions. As a "program" crosses this communications
channel we have an excellent opportunity to characterize its size. This communica-
tions perspective of a program proves very useful in the section on Average-Minimum
program length.

Programmable Machines are a very general model of computational systems. A
PM is an adequate model of many (perhaps all) computational systems because the
semantics of the programming language, which is how computational systems dif-
fer, are unimportant with respect to the combinatorics. PM's include traditional
programmable systems (as in a general purpose digital computer) and other compu-
tational systems that are not obviously "programmable." We demonstrate the idea
of a PM with five examples. For each example, we discuss P, F, M, the meaning of
"program length" within the context of the example, and how the prefix condition is
satisfied.

Examples of Programmable Machines

Random Access Memory (RAM) has a natural PM model. Consider a simplified
model of RAM consisting of n address lines, m data lines and a Read/Write line (Fig-
ure A.3). A "program" p for the RAM might consist of a sequence of Address-Data
combinations with a "Write" value on the Read/Write line, e.g. p = (d1 , d2,... ,4 )
where di = {Write, Addressj, Datai}. P for the RAM might consist of all possible
such p's. A function f realized by a RAM maps Read-Write x Address into Data, i.e.
{Read} x {0, 1}" -- {0, 1}"', and F might be the set of all possible such functions. M
defines f from p, that is, f(x) = Data if there exists a d E p such that the Address
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Figure A.3: Simplified RAM Model

of d is x and the Data of d is Datai. Program length (in bits) with respect to RAM
is the number of bits required to specify a program. For p = (d,d 2,...,dk) and
di = {Write, Addressi, DataJ} , each di consists of 1 bit for Read/Write plus n bits
of address plus m bits of data. There are k di's; therefore, there are k(1 + n + m)
bits in a program. For total functions, k = 2", so there are 2 n(1 + n + m) bits of
program (i.e. s(p) = 2"(1 + n + m)). Therefore, we can define P, F, and M (i.e. PM)
such that PM is a model of RAM. In this context the theoretical results which we
will develop concerning minimum program length have an interpretation as minimum
storage requirements.

For our second example of the generality of the PM model we consider Turing
machines. Turing machines are standard models in Computing Theory and are known
to be equivalent (in terms of computability) to many other models. Define P to be the
set of Turing machines. As pointed out in [59, p.295], a Turing machine is completely
defined by its transition function. Therefore, in the context of this example, a program
is a transition function. F is the set of computable functions. The exact domain and
codomain of f E F are determined by the input and tape symbol sets. M is the
function realized by a person or computer capable of 1) taking a transition function
and constructing (or simulating) the Turing machine (i.e. accept the program) and
2) running the Turing machine (i.e. realize the function). "Program length" is the

size of the transition function. Traditional computing languages (e.g. Fortran) can
similarly be modeled.

As a third example of the PM model consider a "learning by example" machine.
We can model a learning machine by defining a program p to be a sequence of exam-
pies. P is the set of all example sequences of interest. F is the set of all functions
which can be learned by the machine. M models the learning system. M accepts a
program by "learning" (e.g. forming rules, forming feature vectors, adjusting weights,
etc.). M realizes a function in its post-learning behavior. The "program length" is the
size of the example set. In this context, the developments about minimum program
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length and "programmability" become minimum example requirements and "learn-
ability." This example could be adapted to other learning modes, where whatever it
is that the machine learns from acts as the program.

In this example of a PM we connect "program length" with circuit complexity.
Define a program to be the specification of a logic circuit. P is the set of all such
specifications. F is the set of all functions of the form f : {0, 1}" --+{0, 1}. M is the
function realized by 1) a person or automated manufacturing system which "accepts
a program" by constructing a circuit per the specifications and 2) the constructed
circuit which realizes a function. There are many ways in which a logic circuit might
be specified (e.g. ((w AND x) OR ( NOT y)) AND z). However, any specification
must identify the gates (e.g. AND, OR, NOT) and the interconnection of the gates.
Therefore, program length (i.e. length of the circuit specification) is related to the
complexity of the circuit (i.e. number of gates and number of interconnections). In
this context, the developments concerning minimum program length become limits
on minimum circuit complexity.

The discussion in the previous example did not depend on the circuits having
discrete values. Therefore we could define a PM for analog computing (electronic,
acoustical, optical, etc.). Programs would reflect an identification of the components
and their interconnection. F would be the set of functions realizable by some specified
analog computer.

Tabular Programs

There is a special form of program, for most machines, with the following charac-
teristics. One, every function in F has a representation of this form and two, the
length of the program in this form is the same for every function in F. We call a
representation of this form a tabular representation. A tabular representation is es-
sentially an exhaustive list or table of the function's values. Revisiting the examples
above, every RAM program is tabular. That is, every function has a program and
all programs are the same length. With respect to a Turing Machine, a transition
function which includes a transition for each ordered pair of f (i.e. x and f(x)) is
a tabular representation. In this case, as with the RAM, the size of the transition
function (program length) corresponds to the size of f (i.e. 8(p) 0C [f]). A tabular
representation with respect to a learning machine simply means that the "example
set" is an exhaustive list of the ordered pairs of f. That is, there is an example in
the training set for each possible input. Again, the size of the example set (program
length) corresponds to the size of f. A tabular representation with respect to logic
circuits could be constructed using canonical forms. A tabular representation of a
function is a kind of the backstop of all representations.

The Set of Minimum Length Programs

As our final comment on machine models we identify a special subset of the set of
all programs. A program specifies which element of F that the machine is to realize.
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Each program has exactly one function associated with t. However, each function
may have zero, one, or more associated programs. That is, a given program can only
realize one function, but, a particular function may have any number of programs.
Let Pmi,, a subset of P, consist of those elements of P which do not have a shorter
program that realizes the same function.. That is,

Pmi. = {p E P I s(p) <_ s(q)Vq E P and M(p) = M(q)},

where M(p) indicates the function realized by p. A largest element of -P.in is denoted
p', so that s(p') > s(p)Vp E Pmin. That is, p' is a largest program of P,,i, required to
realize any realizable function of F. If s(p') is greater than some threshold (t) then
it immediately follows that there exists a program of length greater than t. That is,
p' is a program of length greater than t. s(p') will be called the max-min program
length of set P with respect to M.

A.2.3 Maximum-Minimum Program Length for Finite and
Transfinite Sets

The following theorem relates function set and program set cardinalities.

Theorem A.6 If (M,P, F) is a Programmable Machine then [P] > [F].

Proof:
By definition of a function, each p E P can be associated with at most one f E F;
or a particular program can only compute one function. Also, since M is onto F,
there is a (p, f) pair for every f E F. Therefore, for every f E F there is at least one
unique p E Pmin and Pmin C P.
0

This seems trivial. However, it is the basis for all the combinatorics based non-
computability results. Now let p' denote the longest program in Pmin. Now we relate
function set cardinality and program length.

Theorem A.7 If(M, P, F) is a Programmable Machine and the programs are strings

on an alphabet Ep of [Ep] letters then '( [F].

Proof:
Theorem A.2 demonstrated that the set of all strings of length less than or equal to

s(p') is [ +- Therefore, any particular set P, with a longest string p', cannot

have more than[ -1 elements, i.e. [ >']- > [P]. This inequality and that

of Theorem A.6 gives us [ >,] [] [F].
0
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Theorem A.8 if(M, P, F) is a Programmable Machine and the programs are vectors
on an alphabet EJp of [Ep] letters then [Ep]s(p) > IF].

Proof:
Same as Theorem A.6, except replace the expression for the cardinality of a set of
strings with the expression for the cardinality of a set of vectors (Theorem A.1).
0

Theorem A.8 may be interpreted as an approximation of the constraint of The-
orem A.7. This approximation is correct to within a factor of 2 by Theorem A.3.
The discussion will use this simpler and essentially correct expression. We will call
"6[Ep]a(P') > [F]" the first max-min program length constraint.

What does the first max-min program length constraint imply about the relation-
ship between function cardinality [f] and program length s(p')? In general nothing.
That is, the function set F and individual elements of F can have any combination of
cardinalities. For example, let the individual functions be of the form {(i,j)}, with
ij E N. In this example, [F] = N., while [f] = 1. On the other hand, suppose we
are only interested in two functions, namely f(x) = x and g(z) = x + 1, each on the
Reals. In this case, [F] = 2, while If] = c. Therefore, in general, the combinatorial
constraint implies nothing about the relationship between function cardinality and
max-min program length.

Let us assume that the functions of interest are exactly all the total functions on a
given domain (X). This assumption creates a relationship between IF] and [f]. This
allows us to use the combinatorial constraint to relate [f] and s(p').

Theorem A.9 If (M, P, F) is a Programmable Machine, the programs are strings
on an alphabet Ep of [EJp] letters and F is the set of all total functions of the form
f : X - Y then

[EPj(P 1)+I 1 > [y]X][EP] - I

Proof:
By Theorem A.4 [F] - [Y][x]. Theorem A.9 then follows immediately from Theo-
rem A.7.
0

Theorem A.10 If (M, P, F) is a Programmable Machine, the programs are vectors
on an alphabet EJp of [Ep] letters, F is the set of all total functions of the form
f : X -f Y and [Y] = [Ep] then s(p') > [X].

Proo
[E( I+- of Theorem A.9 is replaced by [Ep]s(P') as in Theorem ...8 to get [rpj(P') >

[Y1[1]. Since [Y = j)pp, a log of both sides gives s(p') >_ [X].
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Note that [X] = [f] for total functions. When we are talking about decision
problems (i.e. [Y] = 2) and a binary alphabet (i.e. [Ep] = 2), this expression applies.
Again, by fixing some particulars and approximating the cardinality of a set of strings
we can simplify the expression and bc't !r reveal the essential relationships. We call
this the second max-min program length conbtraint.

A comparison between function cardinality and program length seems to be espe-
cially natural. The representation of a function as a look-up table is always possible,
although infinite functions require infinite tables. We can think of a table with a
look-up capability as a "program" and the length of this program is exactly that of
the function. This is the basis for many of the developments of Chapter 4.

We can think of the length of an input in two ways. The length of the input as the
length of a string might be one measure. For functions with inputs from N, the input
length might be the value of the input. However, the set N and the set of finite length
strings have the same cardinality, therefore it makes no difference which approach we
use. Let us treat input length as the length of the string that expresses the input,
and denote it s(x). Now what does the combinatorial constraint imply about the
relationship between input length and program length? Again, in general nothing.
That is, the function set F and an individual element f E F can have independent
cardinalities (as indicated before) and the cardinality of an input X to f can be
independent of [f]. For the example with individual functions of the form {(i,j)},
with ij E N, [F] = N. while s(x) = 1. On the other hand, for the two functions,
f(x) = x and g(x) = x + 1, each on the Reals, [F] = 2 while s(x) = N,. Therefore, in
general, the combinatorial constraint implies nothing about the relationship between
input length and max-min program length.

We established in Theorem A.9 that, with an assumption about the form of the
function set F, we could relate function cardinality [f I to function set cardinality [F].
Now we introduce an additional assumption which allows us to relate input length
s(x) and function set cardinality [F]. Let us assume, as before, that the functions of
interest are exactly all the total functions on a given domain X and codomain Y. In
addition let us assume that the domain X is the set of all strings on an alphabet E.\.
of [Ex) letters. The following theorem relates input length and program length.

Theorem A.11 If (M, P, F) is a Programmable Machine, the programs are strings
on an alphabet Ep of [Ep] letters, F is the set of all total functions of the form
f : X - Y and X is the set of all strings on Ex of length less than or equal to s(x')
then

[P8(P()+i - 1 [ )+ L

(.,' - 1 -

or equivalently
[pJs(p()+I -

p," - 178

178



Proof:
From Theorem A.2, [X] = [X -1 Theorem A.11 then follows immediately from
Theorem A.9.
0

Theorem A.12 If (M, P, F) is a Programmable Machine, the programs are strings
on an alphabet IEp of [IEp] letters, F is the set of all total functions of the form
f : X - Y and X is the set of all strings on EX of length less than or equal to s(aY)
then s(p') > [Y.x"C).

Proof:
By Theorem A.1 [X] = [x]\.(x'). The proof then follows from Theorem A.10.
0

Again, the expression of the constraint can be greatly simplified by assumptions
and approximations in non-essential areas. Under these assumptions, if a machine
can realize all functions with input less than or equal to s(Z') then s(p') is greater
than or equal to the power of input length, i.e. s(p') > [Ex]-(x'). This might also
be expressed .(p') > [.]6(x)Vx E X. This is the third max-min program length
constraint.

The remainder of this section is a summary of the developments so far. We
discussed the important role of simple combinatorics in deciding the max-min program
length. In particular, for there to exist a sufficient number of programs, at least one
for each function, the longest program must be at least a certain length. Another way
to express this is that there must exist a program of a certain length s(p') or longer.
We developed three statements of this combinatorial constraint: 1) [Ep]j8(P') > [F],
2) s(p') >_ [f], and 3) s(p') [.\]s(x)Vx E X. We called these the first, second and
third max-min program length constraints, respectively. We did not assume finite
cardinalities in the development of these constraints; therefore, all the constraints are
valid for finite an .i transfinite cardinals.

The first statement says that there must exist a program whose length is greater
than or equal to the number of elements in the set of functions that the machine
can be programmed to realize. This is the most general and most explicit of the
three statements. It is general in that it uses neither of the assumptions required for
statements 2 and 3. In particular, the functions and their domains are not assumed
to be of a particular form. The first statement is more explicit in that it includes [F]
and s(p'), which are the driving parameters of the problem. The other parameters
(i.e. [f] or s(x)) determine s(p') only indirectly through [F], via the assumptions of
the second and third statements.

The second statement says that there must exist a program with length greater
than or equal to the number of elements in the functions that the machine can be
programmed to realize. This statement requires that we assume a function set of a
certain form. Therefore, it is not as general as the first statement. However, this
statement has an attractive intuitive interpretation. A function is a set of cardinality
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[f], therefore, it is reasonable to expect a representation of the function to be of
cardinality [f]. Furthermore, any function can be represented with a look-up table
(although transfinite functions will require transfinite table sizes) and the size of the
table is exactly [f].

The third statement says that there must exist a program with length greater than
or equal to the power of the longest input string to the functions that the machine can
be programmed to realize. This statement requires two assumptions. One assumption
concerns the functions' form relative to the domain. The other assumption concerns
the form of the domain itself. Therefore, this third statement is the least general of
the three. These assumptions provide the necessary link back to [F]i however, [F] is
now twice removed in this expression. Therefore this third statement is also the least
explicit.

Programmability

We have seen how the combinatorial constraint implies that "programs" must be
a certain length if we are to realize a certain variety of functions. However, with
the machine model of Section A.2.1 we see that "program" has an unusually general
meaning. For example, the combinatorial constraint implies that the specification of
a circuit must be so long if the specification format is sufficiently general to allow
specifying a certain variety of functions. Similarly, the combinatorial constraint im-
plies that a certain minimum number of examples are required if a learning machine
is to be capable of learning a certain variety of functions. The constraint even limits
the expressability of a natural language in instructing a person in a task.

We would now like to develop the idea of "programmability." We assume that
we have a set of functions (F) which we wish to be able to compute and a set of
programs (P) which we are capable of generating. The programmability question then
is: "Does there exist a Programmable Machine which will map P into F?" Another,
more traditional, way of viewing this problem is: "Does there exist an f E F which
cannot be programmed from P?" The previous results provide a sufficient condition
for the existence of non-programmable functions.

Theorem A.13 Given a set of programs P and a set of functions F there exist a
non-programmable function if [P] < [F].

Proof:
There are more f's in F than there are p's in P and any given p can realize only one
f.
0

We can produce several variants of this result using the conditions of Theo-
rems A.8, A.10, and A.12.
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Theorem A.14 If (M, P, F) is a machine, P is the set of strings on Ejr of length
less than or equal to s(p'), F is the set of all total functions of the form f : X -+ Y
and 8(p') < [XjlogQYDl/log([r,,])
then there exist non-programmable functions. Further, if X is the set of all vectors
of length s(v) on E2x and

s-0) < [EX]'t')log(Ir]/log[EP])

then there exist non-programmable functions.

Proof:
Substitute [F] = [Y]I.') (by Theorem A.4), [P] = [Ep]'(P') (by Theorem A.1) and
[XJ = [EP,- '(v)(by Theorem A.1) into Theorem A.13.

With a number of additional specializations to the already specialized result of
Theorem A.14, we can arrive at the traditional statement of noncomputability. Com-
putability can be defined by thresholds of allowed resources (s(p')) and required per-
formance ([F], [f], or s(x)). If these two thresholds are set such that the max-min
program length constraint is violated (i.e. K p" ') < [F]) then there exist noncom-
putable functions. Otherwise, the max-min program length constraint does not imply
noncomputability.

The practice in traditional Computability Theory is to set thresholds which re-
quire s(p') and s(x) to be finite but they can be any element of an unbounded set.
That is, traditional Computability Theory is concerned with the set of functions with
domain N, where N can be thought of as a set of strings. The assumptions used in
developing the traditional Computability Theory statement of noncomputability are
those satisfied in the third max-min program length constraint. Noncomputability
then boils down to the fact that the requirement s(p') > Ks!x) for all finite s(z),
implies that s(p') > n for all finite n, i.e. that s(p') is not finite. Since we allowed all
finite s(x), and required s(p') to be finite, the max-min program length constraint is
not satisfied. Therefore, we say there exist "noncomputable" functions. Since s(x) is
unbounded and f is defined for all x, we know that [f] is unbounded, in particular,
[f] = R, and [F] = c. Therefore, the second max-min program length constraint
becomes s(p') > R,, and the third statement becomes K,)'() > c. As expected, s(p')
is not finite.

Theorem A.15 If P is the set of strings on Ep of length less than or equal to some
finite s(p'), F is the set of all total functions of the form f : X -* Y, X is the
set of all strings of finite length then there does not exist a Programmable Machine
(M, P, F).
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Proof:
[ ](P')+ -1. Ix )+ -

From Theorem A.11, ]- _ [Y] L xJ-,FVX E X if (M, P,F) is a Pro-
grammable Machine. However, in this theorem s(x) is unbounded, thus the inequality
of Theorem A.11 implies that s(p') must be such that the left side is greater than
or equal to the right side for all finite s(x); that is, s(p) is infinite. Therefore, a
Programmable Machine is inconsistent with the conditions of this theorem.
o3

This last theorem is equivalent to the traditional Computability Theory state-
ment, "There exist number theoretic functions which cannot be computed with a
finite program." It is interesting to express this in the context of the first and second
constraints on max-min program length. The traditional statement as a comparison
of function set cardinality to program length (as in the first constraint) is: "In the
infinite set of functions with domain N there exists a function which cannot be com-
puted with a finite program." As a comparison of function cardinality and program
length, we might express the traditional Computability Theory statement: "there ex-
ist infinite functions that cannot be computed with a finite program." So expressed,
noncomputability is much more intuitive. The theorems of this section are a general-
ization of this familiar Computability result. These statements apply for any function
type (even continuous functions), machine type, or programiming method. Therefore,
regardless of the sophistication of the machine, the efficiency of the program, the de-
gree of structure in the functions to be realized, or the length of the function's input,
s(p') is bounded by the above constraints.

Summary

We proposed a generalized development of the combinatorial limitations on com-
putability. A machine is a function M : P -- F from a set of programs onto a set
of functions. By definition of a surjective function, [P] _ [F]. If we assume P is a
set of strings on an alphabet of Kp letters with no elements longer than 8(p') then
essentially K '" ) < [P]. Therefore, K p' )  [F]. If we also assume that F is the set
of all functions on X into Y then [F] = [Y]-\' = [Yjfl. Therefore, K,("') < [Yj!JJ.
For a binary programming alphabet and decision problems this becomes s(p') :_ [f].
Finally, if we also assume that X is the set of all strings no longer than s(z') then

_ j":' K (°  yjK (').
[X] < K. K ". Therefore, K' < . Again, for a binary programming al-
phabet and decision problems this becomes s(p') < Ah'') or s(p') < Ka(x) for all
x E X. Therefore, in order for a machine M : P -- F to compute any function in F,
there must be a program p' E P whose length is such that g p ') > [F], which under
additional assumptions becomes s(p') If] or s(p') , 1x) for all x E X.

182



A.2.4 Average-Minimum Program Length Bound for Finite
Sets

We now develop a lower bound for the average length (i.e. the average over F) of
programs in Pmin when [F] is finite. First we introduce a few new terms. As before,
P is a set of programs satisfying the prefix condition on Ep. F is a finite set of
functions. Pmi, is the subset of P containing exactly one shortest program for each f
in F. M associates a unique f in F with each p in P. 11 is a probability measure on
F, i.e. 11 : F --+ [0, 1] and the sum of H1(f) over all f E F is 1. Using this probability
measure, we define the average-minimum program length SF in the natural way:

SF= >3I(fi)s(pi), where pi = M(fi), i = 1,2,.. ., [F], and Pi E P,i,,.
i=1

Also based on this probability measure, we can define the entropy H of F with respect
to 11:

IF]
H = >3n(fi)log .(f).

Entropy has units associated with it which depend on the base of the logarithm. For
a base of two the units are called bits.

Notice the exact analogy between the situation defined above and that of Source
Encoding in Information Theory [23]. Our set of functions fl, f 2,... , fir] corresponds
to the source alphabet at,a 2,... , aK of Information Theory. Our program alpha-
bet corresponds to their code alphabet (D = [Ep]). Our minimum program lengths
s(M(fi)),a(M(f 2)),...,s(M(f(Fj)) correspond to code lengths nl,n 2 ,...,nK. Our
average-minimum program length SF corresponds to their average code length (i).
Our prefix condition for programs is a special case of the Information Theory re-
quirement for unique decodability. The lower bound on average-minimum program
length proven below is the analogy of the "Source Encoding Theorem" of Information
Theory. This theorem was first proven in [56] as "The Fundamental Theorem for a
Noiseless Channel." The proofs given below are from [23].

Two lemmas will be needed for the proof of the average-minimum program length
lower bound.

Lemma A.1 ln(z) < z - 1 for all z > 0 and equal if and only if z = 1.

Proof:
Consider the first and second derivatives of ln(z) - z + 1.
0

The following lemma is known as the Kraft inequality.

Lemma A.2 If P is a set of programs for F then

IF] ~< 1
i=1
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Proof:
Define ' = max(s(p1 ),s(p2),. . ,S(p(F])) i.e., a' is the largest program in P,. Let A
be the set of all possible programs of length s'. [A] = [Ep]'. Each program pi in P ..hj
corresponds to a subset of A (i.e. Ai) as follows: Ai = {a E Al the string made up
of the first s(pi) elements of a is the same as pi). That is, Ai is the set of all strings
of length s' which begin with the substring pi. All of the Ai's are disjoint because of
the prefix condition. That is, if a is in both Ai and Aj then pi or pj is a prefix of the
other, which violates the prefix condition. Since the Ai's are disjoint subsets of A,

['1
[A,] <141].

Note that [A] = [EpV' and [Ai] = [E}]{'-$(P)}. Therefore,

I'.'] [F]

=F [E]'Z rJ]-(l I~V
i E i= 1

Or,
[F]

i=I1

0

The principle result of this section, the average-minimum program length lower
bound, can now be stated and proven.

Theorem A.16 If (M, P, F) is a machine with probability measure II on F then
Sp > H/log[']p]. That is, the average-minimum program length is greater than or
equal to the entropy of F with respect to II divided by the log of the program alphabet
size. The base of the logarithm in the denominator of the right hand side of the
inequality is determined by the units of H (i.e. the log used in computing H and that
used in the inequality must have the same base).

Proof:
We show that H - Splog([]p]) < 0.

[F 1 [F]

H - SFlog([EP]) = HL(h )log - 1(fi)S(Pi)log[EP]i~~l II(fi) i

[]1 [F]

- U (fi) log f + L II(f) log[,]l-("')i=I IIJi) i= I

- II())log + log[EpI - (Pi)}
I=,184
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-Z"(f,)log

Letz= hen ,

[F] IF]

H - Splog[Ep] = r(f/i) log(z) = log e 11(f,)lnz
i=1 i=1

From Lemma A.1, In z < z - 1, thus
tI , III ( [E ]- ("'O '

H - SFlo[Ep] < log eZI(fj)(z- 1) = loge HI(A)Cf)1

[F] [ F(f]

I[II. IF-,( ) 1F)=log e [Ep](Pi) - 11(fj) = log e Eip")- E 11(i))

log e p[](P) -

From Lemma A.2,

[F]

Z[Fp] -B() < 1 therefore, H - Splog[Ep] < 0.
i=1

0

For finite [F], we can quickly establish a generalized form (with respect to H) of
the Max-Min Program Length Lower Bound.

Corollary A.1 If (M, P, F) is a machine with probability measure 1I on F thens(p') > H/log[Ep].

Proof:

IF] IF] [F]

Sr = (f,)s(pi) <_ j(f,)s(p') = q(p') Z1(f) = 9(p')
i=1 i=l i=1

and SF _ H/log[Ep] by Theorem A.16. Therefore, s(p') > SF _ H/log[Ep].
0

Suppose that all of the functions in F are equally probable; i.e. 1(f) = 1/[F] for
all f E F.

Corollary A.2 If (M, P, F) is a machine with a probability measure H1 on F -ich
that II(f;) = I(f,) for all ij then SF > log[F]/log[Ep],

185



Proof:
The entropy (H) of F is

s~r 1 log[F]
H -- (f)logll(f)- -- l lo = l[F]

JEF fEF [] F] fEF F

log[F= log[F]

- [F] 1 -F [F]

By Theorem A.16, we have that SF > H/log[Ep] = log[F]/log[Ep].
0

Therefore, the average minimum program length is greater than or equal to log[F].
Not only does there exist a program of length log[F] or longer (Theorem A.7), the
average length is log[F] or longer. The following corollary gives the lower bound with
respect to f and s(x).

Corollary A.3 If (M, P, F) is a machine with equally likely probability measure H1
on F and F is the set of all total functions of the form f : X --+ Y then

SF [AX log[Y]
log [EP]

Further, if X is the set of all vectors of length s(v) on Ex then

SF > [E .y](V) log[Y ] .

log[EJp]

Proof:
Substitute [F] = [Y]LXJ (by Theorem A.4) into Corollary A.2 to get the first result.
Substitute [X] = [Fx]s(v) (by Theorem A.1) into the first part to get the second part.
01

The following corollary demonstrates that if there is a short program then there
must also be a long program.

Corollary A.4 If(M, P, F) is a Programmable Machine where there exists an f E F
such that f = M(pl),p, E Pm., and s(pl) < Sr then there exists a g in F such that
g = M(p 2 ),P 2 E Pmin, and 8(p2) > Srl.

Proof-
Suppose to the contrary, that is, s(pi) < Sp but there does not exist g such that
g = M(p 2 ),p 2 E P,,,j,, and 8(p2) > S1,. In other words, for all p E Pmin,S(p) :5 SF.
However

[F] [F]

sF= I (fi)s(pi)= (I)s(p) + Z (fi)s(pi)
=1 i=1
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10 REM A BASICA Program to Demonstrate a Tabular Data Structure
20 DIM F(9)
30 DATA/3,2,7,5,4,7,8,3,6,4/
40 FOR I=O TO 9
50 READ F(I)
60 NEXT I

70 INPUT X
80 PRINT F(X)
90 GOTO 70
100 END

Figure A.4: BASIC Allows for Tabular Data Structures

[F]

< 1(fi)S + II(i)SF

since s(pl) < SF and, for all p E Pmin,s(P) < SF. However,

(fl)SF + =[F]II(f)SF Sp [F]II(fi) = Sr.
i=1 i=1

Therefore, SF < SF, which is a contradiction.
0

The average-minimum program length lower bound of Section A.2.2 combined
with the exponential relationship between input size and function size will be used
to show that realistically programmable functions are an extremely small fraction of
possible functions. At any given time there is some upper bound (Bp) on the length
of realistic program lengths. For example, limited by today's technology, there are
no programs of lengths greater than say 1010 bits. Let Bx be an upper limit on
allowed function input sizes, allowing larger inputs would only make the fraction of
realistically programmable functions even smaller. Most computer languages allow
for the representation of a function in a basically tabular structure (e.g. Figure A.4).

We limit our discussion in this section to machines which allow tabular programs.
Any traditional computer language is included. Some machine learning is included,
where a "tabular program" is an exhaustive sample set. Some circuit design situations
could be included here also. Therefore, while the set of machines which allow tabular
programs does not include all machines, it is still a very general computer model.

We want to characterize the size of tabular programs in terms of a "table" and
some "overhead." In Figure A.4 the numbers in the DATA statement are the "table"
and the rest of the program is the "overhead." We can design a program whose
overhead is essentially constant with respect to increasing function size. The example
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in Figure A.4 requires changing the DIM and FOR statements (these grow as the
log of function size); however, it is possible to design around such statements. Define
M' to be the set of machines which allow programs with lengths < [f] + K, for any
f and some constant K. Let F be a set of functions on inputs of length B.Y. Let G
(the "good" functions) be the subset of F such that

G = {f E F13p E f = M'(p) implies that s(p) :_ Bp}.

Define R = [G]/[FJ, the fraction of F with programs of length Bp or less. This
fraction of realistically computable functions is very small.

Theorem A.17 For any machine in M', R < K

Proof:
Let St be the average-minimum program length of the set of functions . We are
especially concerned with SF, SG and SF-G.

SF [G]SG + [F - G]SF-G
[F]

RSG + (1 - R)SFG

Since every function in f has a tabular program of cost [f] + K, the average-minimum
cost over F (or any subset of F) cannot exceed this. Therefore,

SF-G <_. [f] + K = [,XIBx + K

and
SG < Bp

from the definition of Bp. Substituting these relations into the expression for SF:

Sp = RS0 + (1 - R)SP-a _< R(Bp) + (1 - R)([E.] Bx + K)

From Theorem A.16, SF > [f] = [E.-]B.x. Therefore,

[E.\.]x < SF < R(BP) + (1 - R)([Ex]Bx + K)

[+J.]BX < R(Bp) + [XlBx + K - R([ExIjBx + K),

K > R(Bp - [,.\]B, + K).

Therefore,

KR [E .]Bx - Bp + K"

We see that the fraction of 'good' (i.e. realistically programmable) functions goes
as the inverse of the difference between the bound in program size (Bp) and the bound
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n log R1  log R 2

12 -256 >.0
25 -3.3546 x 1 -8.554 x 106
50 -1.1259 x 10"s -1.1259 x 10'"

100 -1.2676 × 1030 -1.2676 x 103'

Table A.1: Fraction of Functions Computable by NN

in function size ([ .x]Bx). However, the bound in fwction size goes up exponentigily
with the bound in input size. Therefore, the fract on of 'good' functions is extremely
small for any reasonable combination of bounds. For example, even if we say that
programs up to 1010 bits are realistic, then less than 10- 12 percent of the functions
on 64 bits (e.g. two 32 bit integers) have realistic programs.

There are many questionable particulars in the assumptions of Theorem A.17.
For example, the 'overhead' should perhaps be log or linear rather than constant.
However, the point remains valid. That is, the fraction of functions which we can
reasonable expect to program is extremely small. Functions with reasonable pro-
grams are very special. This result suggests that we should not discount represen-
tation methods because they only have efficient representations on a small class of
functions. For example, one reason often given in Switching Theory for not pursuing
Function Decomposition as a design method is that only a small fraction of functions
decompose. However, it was just demonstrated that any representation method will
only efficiently represent a small fraction of functions.

The limitations of Neural Nets (NN) are quite striking when we interpret the
learned parameters of the net as its program.' A fully interconnected NN of depth d
and n input bits has approximately d x n parameters which can be adjusted as the
net learns. Each parameter is some real variable of say r bits. Therefore, the program
length is r x d x n. The number of programs possible on such a NN is 2rd~n. The
number of functions on n variables is 22". The fraction of computable functions then

2 rxdxnis R = 2--; which gets very small very fast. R, in Table A.1 is for r = 64 and
d = 5, which is a reasonable NN. R 2 is for r = 1000 and d = 1000, which is much
larger than most people are considering for NN's. Note that the table contains the
logarithm of R. Therefore, only an infinitesimal fraction of l'unctions are computable
with any foreseeable NN.

We now demonstrate a machine which is optimal in terms of fhc average required
program length. Assume that the finite set X is ordered. Define a Table Machine as
a machine whose program pi simply lists, in order of X, the images of fi : X -4 Y.
Assume that F is the set of all total functions from X into Y, where Y is also a finite
s-'t. Assume that the elements of X, when considered as strings, satisfy the prefix
cco1dition. Finally assume that all elements of F are equally probable.

'See [2] for a more sophisticated treatment of this idea.
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10 REM A Basica Program for a Z-248 as a demonstration of a Table Machine.
20 DIM(9)
30 REM Accept the Program
40 FOR I=O TO 9
50 PRINT 'IF(";I;")=";
60 A$INKEY$: IF A$'' THEN 60
70 F(I)=VAL(A$)
80 PRINT F(I)
90 NEXT I
100 PRINT "Press S to stop"
110 REM Realize the Function
120 PRINT "Xu";
130 A$INKEY$: IF A$="" THEN 130
140 IF A$="S" THEN 190
150 X=VAL(A$)
160 PRINT X
170 PRINT "F(X)=";F(X)
180 GOTO 120
190 END

Figure A.5: An Example Table Machine

An example of a Table Machine for X = Y = {0,1, 2,3,4,5,6,7,8,9} is given in
Figure A.5 (actually the Table Machine consists of a PC running this program). This
example demonstrates that Table Machines exist in the "real world."

The "program" for this example is the first 10 digits that one enters in response
to the F(I)=? prompts. We now prove that a Table Machine is optimal in terms of
average required program length.

Theorem A.18 If X is an ordered finite set whose elements satisfy the prefix con-
dition, Y is a finite set, F is the set of all total functions of the form f : X -- Y, the
elements of F are equally probable, PT is the set of programs associated with a Ta-
ble Machine, and PA, is the set of programs associated with any other machine, then
SF-T < S-...A That is, the average-minimum program length for a Table Machine
is optimal.

Proof:
s(p'r) = [XI for P7 E PT from the definition of a Table Machine. SF-T = s(pT) since
all elements of F are equally probable. Therefore, S.-T = [X]. For an arbitrary
machine M, S--Al > !1] from Corollary A.3. However, [F] = [Y]('J since F is thelog[ ,]
set of all total functions on X into Y and [Y] = [Ep] from the definition of i Table

190



Machine. Then,

log[F = [X] log[Ep] and Sr-Ai > X logEe]-log[r~J]

Therefore, SF-A > [X] = SF-T.
0

One consequence of this theorem is that "powerful" languages (e.g. Fortran is more
"powerful" than a machine language) do not lessen the average-minimum program
length. The intuition that more powerful languages should allow a simpler expres-
sion of a relationship is shown to depend a non-equally probable distribution of the
function set. This suggests a connection between language design and some assumed
(at least implicitly) probability distribution on F.

Theorem A.19 establishes that the bounds of Theorem A.16, Corollary A.2 and
Corollary A.3 are the greatest lower bounds when the assumptions of Theorem A.18
are met.

Theorem A.19 If the conditions of Theorem A,18 are met, thr ihe lower bounds of
Theorem A.i 6, Corollary A. 2 and Corollary A. 3 are greaiest- lower bounds of average-
minimum program length.

Proof:
If there were a greater lower bound then it would be violated by a Table Machine.
0

A.3 Summary

This appendix develops a theory of computational complexity based on program
length. We formally defined our concept of programmable machine and proved nu-
merous properties of program length. A programmable machine is sufficiently abstract
to include many different kinds of problems. Under various interpretations the pro.
gram length results become memory requirements, learnability, or circuit complexity
results. In effect, we have brought into an engineering setting some of the devel-
opments of Shannon, Turing, C1h-itin and others. This common setting then has
extended applications, such as learnability, circuit complexity and especially Pattern
Theory.
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Appendix B

Function Decomposition Program
User's Guide

This software is located in ficsim::user2:[vogt]'. There are 10 (that's right 10) differ-
ent versions characterized as follows:

V.1. (8): Non-shared, exhaustive
V.2. (2): Non-shared, negative decompositions
V.2A. (0): Non-shared, negative decompositions,

greedy search
V.2B. (3): Non-shared, negative decompositions,

number of cares cost
V.2AB. (1): Non-shared, negative decompositions,

number of cares cost, greedy
V.3. (9): Shared, exhaustive
V.4. (6): Shared, negative decompositions
V.4A. (4): Shared, negative decompositions,

greedy search
V.4B. (7): Shared, negative decompositions,

number of cares cost
V.4AB. (5): Shared, negative decompositions,

number of cares cost, greedy

The numbers in parentheses indicate relative speed, with V.2A being the fastest
and V.3 the slowest. These are only rough estimates, and may even be slightly wrong.

To run the program, get into the directory appropriate to the version you want
to run, e.g.

$ set def [vogt.pbml.v4ab]

and then type

'This User's Guide was written by Chris Vogt.
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run pbml-driver

It's that simple. The program will then come up with the following prompt:

SPECIFY FUNCTION TABLE VALUES:

Enter 0 to input from a file, i from terminal,

or 2 to QUIT program:

Interactive Interface
To enter the function in question interactively, enter a 1. The program will then

prompt you for the information needed. The prompts are relatively staightforward.
A sample session to input a "checkerboard" on 3 variables (i.e. 01011010) is shown
below:

Name of function: checkerboard3
How many input variables does the function have?3

Enter 0 to input falses, 1 to enter trues: 1
How many function values will you be entering? 4
Enter negative values below for Don't Cares
Enter decimal equivalent of binary input that has a true value: I
Enter decimal.equivalent of binary input that has a true value: 3
Enter decimal equivalent of binary input that has a true value: 4
Enter decimal equivalent of binary input that has a true value: 6

To enter "don't care" values, use a negative number. For example, if we wanted to
enter the function 010X1010, we would have typed -3 instead of 3.
Input From a File
If you are going to be using a function often, it may be handy to store it in a file.
To input a function from a file, type 0 to the first prompt. The program will then

prompt you for the file name. Make sure you give the full file specification needed, or
the program will crash. The function is stored in the file with the following format:
The first n + 1 digits indicate the number of input variables in unary. The next 2n

digits are the function itself. Thus, the file for the checkerboard entered above would
be:

0
1

1
0
0
1
0
1
1
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0

0

Note that the first 4 digits (1110) tell us that n = 3, and the next 8 are the actual
function. To indicate a "don't care" in the function, use a 2 instead of a 0 or 1,

Non-interactive Runs/Batch Jobs
Sometimes you may want to make runs of several functions and save the output.

This can be done simply using a command file. A sample command file, BATCH-
DRIVER.COM, is found in each version's [.TEST] subdirectory. It consists of two
lines:

$ set def [vogt.pbml.vl.test)
$ run/detached/inputrinput.dat/output=output.dat [-]pbml-driver

To utilize this file, you must first create a file input.dat to be used as input to the
program. It should contain exactly what you would type if you ran the program. A
sample input.dat is shown here:

0
[vogt.pbml. data) CHECK6.DAT
0
[vogt. pbml. data) LETTERA.DAT
0
[vogt. pbml. data) MIKESEXAM.DAT
I
checkerboard3
3
1
4
1
3
4
6
2

Note, this input file will first decompose three functions which are specified in files
(check6.dat, lettera.dat, mikes-exam.dat) and then will decompose the checkerboard
on 3 variables as in the example shown previously. The last 2 in the file is the
command to quit the program.

After having created input.dat, one runs the program by issuing the command:

$ submit/nolog/noprint/notify batch-driver.com
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The output from the program will be saved in the file output. dat, which will not be
accessible until the program is done running.

Recompilation
If changes are made to the source code, recompilation is simple. In each ver-

sion's directory, there is a corn file called comp*.com which does the job. The* is
replaced with the version number. Thus, in [vogt.pbml.v2ab] there is a file called
compv2ab.com. This file can be executed interactively (with the @ sign), or can be
submitted as a batch job.

Two WARNINGS about recompiling:

e At present there is just barely enough disk quota to handle all of the files
created during compilation. You need about 1300 blocks free, so check the
quota beforehand.

* After compiling, to get rid of all of the "unnecessary" files created, execute the
command file killada.com found in [vogt.com].
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